These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 16649540)
1. Protein rejecting properties of PEG-grafted nanoparticles: influence of PEG-chain length and surface density evaluated by two-dimensional electrophoresis and bicinchoninic acid (BCA)-proteinassay. Gessner A; Paulke BR; Müller RH; Göppert TM Pharmazie; 2006 Apr; 61(4):293-7. PubMed ID: 16649540 [TBL] [Abstract][Full Text] [Related]
2. 'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Gref R; Lück M; Quellec P; Marchand M; Dellacherie E; Harnisch S; Blunk T; Müller RH Colloids Surf B Biointerfaces; 2000 Oct; 18(3-4):301-313. PubMed ID: 10915952 [TBL] [Abstract][Full Text] [Related]
3. Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN). Göppert TM; Müller RH Eur J Pharm Biopharm; 2005 Aug; 60(3):361-72. PubMed ID: 15996577 [TBL] [Abstract][Full Text] [Related]
4. Size-selective protein adsorption to polystyrene surfaces by self-assembled grafted poly(ethylene glycols) with varied chain lengths. Lazos D; Franzka S; Ulbricht M Langmuir; 2005 Sep; 21(19):8774-84. PubMed ID: 16142960 [TBL] [Abstract][Full Text] [Related]
5. Functional groups on polystyrene model nanoparticles: influence on protein adsorption. Gessner A; Lieske A; Paulke BR; Müller RH J Biomed Mater Res A; 2003 Jun; 65(3):319-26. PubMed ID: 12746878 [TBL] [Abstract][Full Text] [Related]
6. Effect of the Polymer Architecture on the Structural and Biophysical Properties of PEG-PLA Nanoparticles. Rabanel JM; Faivre J; Tehrani SF; Lalloz A; Hildgen P; Banquy X ACS Appl Mater Interfaces; 2015 May; 7(19):10374-85. PubMed ID: 25909493 [TBL] [Abstract][Full Text] [Related]
7. Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma. Kizhakkedathu JN; Janzen J; Le Y; Kainthan RK; Brooks DE Langmuir; 2009 Apr; 25(6):3794-801. PubMed ID: 19708153 [TBL] [Abstract][Full Text] [Related]
8. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles. Sant S; Poulin S; Hildgen P J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249 [TBL] [Abstract][Full Text] [Related]
9. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density. Essa S; Rabanel JM; Hildgen P Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551 [TBL] [Abstract][Full Text] [Related]
11. Transport of PLA-PEG particles across the nasal mucosa: effect of particle size and PEG coating density. Vila A; Gill H; McCallion O; Alonso MJ J Control Release; 2004 Aug; 98(2):231-44. PubMed ID: 15262415 [TBL] [Abstract][Full Text] [Related]
12. Pegylated polystyrene particles as a model system for artificial cells. Meng F; Engbers GH; Gessner A; Müller RH; Feijen J J Biomed Mater Res A; 2004 Jul; 70(1):97-106. PubMed ID: 15174113 [TBL] [Abstract][Full Text] [Related]
13. Adsorption of poly(ethylene glycol)-modified ribonuclease A to a poly(lactide-co-glycolide) surface. Daly SM; Przybycien TM; Tilton RD Biotechnol Bioeng; 2005 Jun; 90(7):856-68. PubMed ID: 15841471 [TBL] [Abstract][Full Text] [Related]
14. Complement consumption by poly(ethylene glycol) in different conformations chemically coupled to poly(isobutyl 2-cyanoacrylate) nanoparticles. Peracchia MT; Vauthier C; Passirani C; Couvreur P; Labarre D Life Sci; 1997; 61(7):749-61. PubMed ID: 9252249 [TBL] [Abstract][Full Text] [Related]
15. Assessment of PEG on polymeric particles surface, a key step in drug carrier translation. Rabanel JM; Hildgen P; Banquy X J Control Release; 2014 Jul; 185():71-87. PubMed ID: 24768790 [TBL] [Abstract][Full Text] [Related]
16. Effect of polyethylene glycol (PEG) chain organization on the physicochemical properties of poly(D, L-lactide) (PLA) based nanoparticles. Essa S; Rabanel JM; Hildgen P Eur J Pharm Biopharm; 2010 Jun; 75(2):96-106. PubMed ID: 20211727 [TBL] [Abstract][Full Text] [Related]
17. Regulating the surface poly(ethylene glycol) density of polymeric nanoparticles and evaluating its role in drug delivery in vivo. Du XJ; Wang JL; Liu WW; Yang JX; Sun CY; Sun R; Li HJ; Shen S; Luo YL; Ye XD; Zhu YH; Yang XZ; Wang J Biomaterials; 2015 Nov; 69():1-11. PubMed ID: 26275857 [TBL] [Abstract][Full Text] [Related]
18. Adsorption of peptides and small proteins with control access polymer permeation to affinity binding sites. Part I: Polymer permeation-immobilized metal ion affinity chromatography separation adsorbents with polyethylene glycol and immobilized metal ions. González-Ortega O; Porath J; Guzmán R J Chromatogr A; 2012 Mar; 1227():115-25. PubMed ID: 22281505 [TBL] [Abstract][Full Text] [Related]
19. Protein-Resistant Biodegradable Amphiphilic Graft Copolymer Vesicles as Protein Carriers. Wang Y; Yan L; Li B; Qi Y; Xie Z; Jing X; Chen X; Huang Y Macromol Biosci; 2015 Sep; 15(9):1304-13. PubMed ID: 26036907 [TBL] [Abstract][Full Text] [Related]
20. In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Fang C; Shi B; Pei YY; Hong MH; Wu J; Chen HZ Eur J Pharm Sci; 2006 Jan; 27(1):27-36. PubMed ID: 16150582 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]