BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16649626)

  • 1. Fe(II) speciation and its uptake by free and immobilized cells of Pseudomonas fluorescens from industrial waste water.
    Singh AL; Kulshreshtha UC; Mohan SV; Sarma PN
    J Environ Sci Eng; 2004 Oct; 46(4):277-81. PubMed ID: 16649626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of phenol by bacterial strains from petroleum-refining wastewater purification plant.
    Pakuła A; Bieszkiewicz E; Boszczyk-Maleszak H; Mycielski R
    Acta Microbiol Pol; 1999; 48(4):373-80. PubMed ID: 10756720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Siderophore production by using free and immobilized cells of two pseudomonads cultivated in a medium enriched with Fe and/or toxic metals (Cr, Hg, Pb).
    Braud A; Jézéquel K; Léger MA; Lebeau T
    Biotechnol Bioeng; 2006 Aug; 94(6):1080-8. PubMed ID: 16586510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands.
    Jayaweera MW; Kasturiarachchi JC; Kularatne RK; Wijeyekoon SL
    J Environ Manage; 2008 May; 87(3):450-60. PubMed ID: 17383797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal biosorption capacity of the organic solvent tolerant Pseudomonas fluorescens TEM08.
    Uzel A; Ozdemir G
    Bioresour Technol; 2009 Jan; 100(2):542-8. PubMed ID: 18657416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerobic degradation of nitrobenzene by immobilization of Rhodotorula mucilaginosa in polyurethane foam.
    Zheng C; Zhou J; Wang J; Qu B; Wang J; Lu H; Zhao H
    J Hazard Mater; 2009 Aug; 168(1):298-303. PubMed ID: 19303212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of ethylbenzene by free and immobilized Pseudomonas fluorescens-CS2.
    Parameswarappa S; Karigar C; Nagenahalli M
    Biodegradation; 2008 Feb; 19(1):137-44. PubMed ID: 17534726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced biosorption of nickel(II) ions by silica-gel-immobilized waste biomass: biosorption characteristics in batch and dynamic flow mode.
    Akar T; Kaynak Z; Ulusoy S; Yuvaci D; Ozsari G; Akar ST
    J Hazard Mater; 2009 Apr; 163(2-3):1134-41. PubMed ID: 18755542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of phenolic compounds from coking wastewater by immobilized white rot fungus Phanerochaete chrysosporium.
    Lu Y; Yan L; Wang Y; Zhou S; Fu J; Zhang J
    J Hazard Mater; 2009 Jun; 165(1-3):1091-7. PubMed ID: 19062164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfide removal in petroleum refinery wastewater by chemical precipitation.
    Altaş L; Büyükgüngör H
    J Hazard Mater; 2008 May; 153(1-2):462-9. PubMed ID: 17913353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the activated sludge bacteria participating in the biodegradation of methanol, formaldehyde and ethylene glycol. II. Utilization of various carbon and nitrogen compounds.
    Grabińska-Loniewska A
    Acta Microbiol Pol B; 1974; 6(2):83-8. PubMed ID: 4209889
    [No Abstract]   [Full Text] [Related]  

  • 12. Biodegradation of phenol and sodium salicylate mixtures by suspended Pseudomonas putida CCRC 14365.
    Tsai SY; Juang RS
    J Hazard Mater; 2006 Nov; 138(1):125-32. PubMed ID: 16806688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of rhodium(III) from solutions and industrial wastewaters by a sulfate-reducing bacteria consortium.
    Ngwenya N; Whiteley CG
    Biotechnol Prog; 2006; 22(6):1604-11. PubMed ID: 17137308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment of metal cyanide bearing wastewater by simultaneous adsorption and biodegradation (SAB).
    Dash RR; Balomajumder C; Kumar A
    J Hazard Mater; 2008 Mar; 152(1):387-96. PubMed ID: 17706348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detoxification of selenite and mercury by reduction and mutual protection in the assimilation of both elements by Pseudomonas fluorescens.
    Belzile N; Wu GJ; Chen YW; Appanna VD
    Sci Total Environ; 2006 Aug; 367(2-3):704-14. PubMed ID: 16626785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron.
    Oh SY; Kim HW; Park JM; Park HS; Yoon C
    J Hazard Mater; 2009 Aug; 168(1):346-51. PubMed ID: 19285795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of benzidine based azodyes Direct red and Direct blue by the immobilized cells of Pseudomonas fluorescens D41.
    Puvaneswari N; Muthukrishnan J; Gunasekaran P
    Indian J Exp Biol; 2002 Oct; 40(10):1131-6. PubMed ID: 12693692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of terephthalic acid in alkalized wastewater by ferric chloride.
    Wen YZ; Tong SP; Zheng KF; Wang LL; Lv JZ; Lin J
    J Hazard Mater; 2006 Nov; 138(1):169-72. PubMed ID: 16839672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of constructed wetland for the removal of heavy metals from industrial wastewater.
    Khan S; Ahmad I; Shah MT; Rehman S; Khaliq A
    J Environ Manage; 2009 Aug; 90(11):3451-7. PubMed ID: 19535201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Banana peel: a green and economical sorbent for the selective removal of Cr(VI) from industrial wastewater.
    Memon JR; Memon SQ; Bhanger MI; El-Turki A; Hallam KR; Allen GC
    Colloids Surf B Biointerfaces; 2009 May; 70(2):232-7. PubMed ID: 19181491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.