These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 16649993)
1. Structure of the complex of a yeast glucoamylase with acarbose reveals the presence of a raw starch binding site on the catalytic domain. Sevcík J; Hostinová E; Solovicová A; Gasperík J; Dauter Z; Wilson KS FEBS J; 2006 May; 273(10):2161-71. PubMed ID: 16649993 [TBL] [Abstract][Full Text] [Related]
2. The 'pair of sugar tongs' site on the non-catalytic domain C of barley alpha-amylase participates in substrate binding and activity. Bozonnet S; Jensen MT; Nielsen MM; Aghajari N; Jensen MH; Kramhøft B; Willemoës M; Tranier S; Haser R; Svensson B FEBS J; 2007 Oct; 274(19):5055-67. PubMed ID: 17803687 [TBL] [Abstract][Full Text] [Related]
3. Molecular cloning and 3D structure prediction of the first raw-starch-degrading glucoamylase without a separate starch-binding domain. Hostinová E; Solovicová A; Dvorský R; Gasperík J Arch Biochem Biophys; 2003 Mar; 411(2):189-95. PubMed ID: 12623067 [TBL] [Abstract][Full Text] [Related]
4. Thermodynamics of binding of heterobidentate ligands consisting of spacer-connected acarbose and beta-cyclodextrin to the catalytic and starch-binding domains of glucoamylase from Aspergillus niger shows that the catalytic and starch-binding sites are in close proximity in space. Sigurskjold BW; Christensen T; Payre N; Cottaz S; Driguez H; Svensson B Biochemistry; 1998 Jul; 37(29):10446-52. PubMed ID: 9671514 [TBL] [Abstract][Full Text] [Related]
6. Starch degradation by glucoamylase Glm from Saccharomycopsis fibuligera IFO 0111 in the presence and absence of a commercial pullulanase. Valachová K; Horváthová V Chem Biodivers; 2007 May; 4(5):874-80. PubMed ID: 17511002 [TBL] [Abstract][Full Text] [Related]
7. Molecular structure of a barley alpha-amylase-inhibitor complex: implications for starch binding and catalysis. Kadziola A; Søgaard M; Svensson B; Haser R J Mol Biol; 1998 Apr; 278(1):205-17. PubMed ID: 9571044 [TBL] [Abstract][Full Text] [Related]
8. Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. Sim L; Quezada-Calvillo R; Sterchi EE; Nichols BL; Rose DR J Mol Biol; 2008 Jan; 375(3):782-92. PubMed ID: 18036614 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of the polyextremophilic alpha-amylase AmyB from Halothermothrix orenii: details of a productive enzyme-substrate complex and an N domain with a role in binding raw starch. Tan TC; Mijts BN; Swaminathan K; Patel BK; Divne C J Mol Biol; 2008 May; 378(4):852-70. PubMed ID: 18387632 [TBL] [Abstract][Full Text] [Related]
10. Starch fermentation by recombinant saccharomyces cerevisiae strains expressing the alpha-amylase and glucoamylase genes from lipomyces kononenkoae and saccharomycopsis fibuligera. Eksteen JM; Van Rensburg P; Cordero Otero RR; Pretorius IS Biotechnol Bioeng; 2003 Dec; 84(6):639-46. PubMed ID: 14595776 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional structure of an intact glycoside hydrolase family 15 glucoamylase from Hypocrea jecorina. Bott R; Saldajeno M; Cuevas W; Ward D; Scheffers M; Aehle W; Karkehabadi S; Sandgren M; Hansson H Biochemistry; 2008 May; 47(21):5746-54. PubMed ID: 18457422 [TBL] [Abstract][Full Text] [Related]
12. SusG: a unique cell-membrane-associated alpha-amylase from a prominent human gut symbiont targets complex starch molecules. Koropatkin NM; Smith TJ Structure; 2010 Feb; 18(2):200-15. PubMed ID: 20159465 [TBL] [Abstract][Full Text] [Related]
13. Cloning and expression of a gene for an alpha-glucosidase from Saccharomycopsis fibuligera homologous to family GH31 of yeast glucoamylases. Hostinová E; Solovicová A; Gasperík J Appl Microbiol Biotechnol; 2005 Nov; 69(1):51-6. PubMed ID: 15821912 [TBL] [Abstract][Full Text] [Related]
14. Structure of raw starch-digesting Bacillus cereus beta-amylase complexed with maltose. Mikami B; Adachi M; Kage T; Sarikaya E; Nanmori T; Shinke R; Utsumi S Biochemistry; 1999 Jun; 38(22):7050-61. PubMed ID: 10353816 [TBL] [Abstract][Full Text] [Related]
15. Two secondary carbohydrate binding sites on the surface of barley alpha-amylase 1 have distinct functions and display synergy in hydrolysis of starch granules. Nielsen MM; Bozonnet S; Seo ES; Mótyán JA; Andersen JM; Dilokpimol A; Abou Hachem M; Gyémánt G; Naested H; Kandra L; Sigurskjold BW; Svensson B Biochemistry; 2009 Aug; 48(32):7686-97. PubMed ID: 19606835 [TBL] [Abstract][Full Text] [Related]
16. Improving the amylolytic activity of Saccharomyces cerevisiae glucoamylase by the addition of a starch binding domain. Latorre-García L; Adam AC; Manzanares P; Polaina J J Biotechnol; 2005 Aug; 118(2):167-76. PubMed ID: 15963591 [TBL] [Abstract][Full Text] [Related]
17. Crystal structures of the starch-binding domain from Rhizopus oryzae glucoamylase reveal a polysaccharide-binding path. Tung JY; Chang MD; Chou WI; Liu YY; Yeh YH; Chang FY; Lin SC; Qiu ZL; Sun YJ Biochem J; 2008 Nov; 416(1):27-36. PubMed ID: 18588504 [TBL] [Abstract][Full Text] [Related]
18. Structure-function relationships in the catalytic and starch binding domains of glucoamylase. Coutinho PM; Reilly PJ Protein Eng; 1994 Mar; 7(3):393-400. PubMed ID: 8177888 [TBL] [Abstract][Full Text] [Related]
19. Modulation of biorecognition of glucoamylases with Concanavalin A by glycosylation via recombinant expression. Mislovicová D; Masárová J; Hostinová E; Gasperík J; Gemeiner P Int J Biol Macromol; 2006 Nov; 39(4-5):286-90. PubMed ID: 16797066 [TBL] [Abstract][Full Text] [Related]
20. Thermodynamics of reversible and irreversible unfolding and domain interactions of glucoamylase from Aspergillus niger studied by differential scanning and isothermal titration calorimetry. Christensen T; Svensson B; Sigurskjold BW Biochemistry; 1999 May; 38(19):6300-10. PubMed ID: 10320360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]