BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 1665019)

  • 1. Synthesis and utilization of a nonhydrolyzable phosphoadenosine phosphosulfate analog.
    Ng K; D'Souza M; Callahan L; Geller DH; Kearns AE; Lyle S; Schwartz NB
    Anal Biochem; 1991 Oct; 198(1):60-7. PubMed ID: 1665019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and properties of a nonhydrolyzable adenosine phosphosulfate analog.
    Callahan L; Ng K; Geller DH; Agarwal K; Schwartz NB
    Anal Biochem; 1989 Feb; 177(1):67-71. PubMed ID: 2545117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and partial purification of PAPS translocase.
    Ozeran JD; Westley J; Schwartz NB
    Biochemistry; 1996 Mar; 35(12):3695-703. PubMed ID: 8619989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfation and sulfotransferases 5: the importance of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) in the regulation of sulfation.
    Klaassen CD; Boles JW
    FASEB J; 1997 May; 11(6):404-18. PubMed ID: 9194521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP sulfurylase from filamentous fungi: which sulfonucleotide is the true allosteric effector?
    MacRae I; Segel IH
    Arch Biochem Biophys; 1997 Jan; 337(1):17-26. PubMed ID: 8990263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The presence of an iron-sulfur cluster in adenosine 5'-phosphosulfate reductase separates organisms utilizing adenosine 5'-phosphosulfate and phosphoadenosine 5'-phosphosulfate for sulfate assimilation.
    Kopriva S; Büchert T; Fritz G; Suter M; Benda R; Schünemann V; Koprivova A; Schürmann P; Trautwein AX; Kroneck PM; Brunold C
    J Biol Chem; 2002 Jun; 277(24):21786-91. PubMed ID: 11940598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermediate channeling between ATP sulfurylase and adenosine 5'-phosphosulfate kinase from rat chondrosarcoma.
    Lyle S; Ozeran JD; Stanczak J; Westley J; Schwartz NB
    Biochemistry; 1994 Jun; 33(22):6822-7. PubMed ID: 8204616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfate activation and transport in mammals: system components and mechanisms.
    Schwartz NB; Lyle S; Ozeran JD; Li H; Deyrup A; Ng K; Westley J
    Chem Biol Interact; 1998 Feb; 109(1-3):143-51. PubMed ID: 9566742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Communication: Homocysteine, Thioretinaco Ozonide, Oxidative Phosphorylation, Biosynthesis of Phosphoadenosine Phosphosulfate and the Pathogenesis of Atherosclerosis.
    McCully KS
    Ann Clin Lab Sci; 2016 Dec; 46(6):701-704. PubMed ID: 27993887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An enzymatic procedure for the preparation and purification of 3'-phosphoadenosine 5'-phospho-[35S]sulfate ([35S]PAPS): applications in syntheses of 8-azido and 8-bromo derivatives of [35S]PAPS.
    Shailubhai K; Singh RK; Schmuke JJ; Jacob GS
    Anal Biochem; 1996 Dec; 243(1):165-70. PubMed ID: 8954540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic synthesis of PAPS with an ATP-regeneration system.
    Ibuki H; Tashiro T; Hayashi M; Nakajima H; Liu MC; Suiko M
    Nucleic Acids Symp Ser; 1992; (27):171-2. PubMed ID: 1337784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenosine-5'-phosphosulfate kinase from Penicillium chrysogenum: ligand binding properties and the mechanism of substrate inhibition.
    Renosto F; Martin RL; Segel IH
    Arch Biochem Biophys; 1991 Jan; 284(1):30-4. PubMed ID: 1846515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of enzymes for 3'-phosphoadenosine-5'-phosphosulfate (PAPS) biosynthesis and their preparation for PAPS synthesis and regeneration.
    Datta P; Fu L; He W; Koffas MAG; Dordick JS; Linhardt RJ
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):7067-7078. PubMed ID: 32601738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of adenosine-5'-phosphosulfate instead of 3'-phosphoadenosine-5'-phosphosulfate in cysteine biosynthesis by Rhizobium meliloti and other members of the family Rhizobiaceae.
    Abola AP; Willits MG; Wang RC; Long SR
    J Bacteriol; 1999 Sep; 181(17):5280-7. PubMed ID: 10464198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the phosphorylated enzyme intermediate formed in the adenosine 5'-phosphosulfate kinase reaction.
    Satishchandran C; Hickman YN; Markham GD
    Biochemistry; 1992 Dec; 31(47):11684-8. PubMed ID: 1332767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfohydrolytic degradation of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) and adenosine 5'-phosphosulfate (APS) by enzymes of a nucleotide pyrophosphatase nature.
    Fukui S; Yoshida H; Yamashina I
    J Biochem; 1981 Nov; 90(5):1537-40. PubMed ID: 6121793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand-induced structural changes in adenosine 5'-phosphosulfate kinase from Penicillium chrysogenum.
    Lansdon EB; Segel IH; Fisher AJ
    Biochemistry; 2002 Nov; 41(46):13672-80. PubMed ID: 12427029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic studies of Escherichia coli adenosine-5'-phosphosulfate kinase.
    Satishchandran C; Markham GD
    Arch Biochem Biophys; 2000 Jun; 378(2):210-5. PubMed ID: 10860538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of PAPS translocase: evidence for an antiport mechanism.
    Ozeran JD; Westley J; Schwartz NB
    Biochemistry; 1996 Mar; 35(12):3685-94. PubMed ID: 8619988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of PAPS in vitro by human liver. Measurement by two independent assay procedures.
    Wong KP; Khoo BY; Sit KH
    Biochem Pharmacol; 1991 Jan; 41(1):63-9. PubMed ID: 1846073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.