BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 16650407)

  • 21. The non-canonical Hop protein from Caenorhabditis elegans exerts essential functions and forms binary complexes with either Hsc70 or Hsp90.
    Gaiser AM; Brandt F; Richter K
    J Mol Biol; 2009 Aug; 391(3):621-34. PubMed ID: 19559711
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The common tetratricopeptide repeat acceptor site for steroid receptor-associated immunophilins and hop is located in the dimerization domain of Hsp90.
    Carrello A; Ingley E; Minchin RF; Tsai S; Ratajczak T
    J Biol Chem; 1999 Jan; 274(5):2682-9. PubMed ID: 9915798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structure of proteolytic fragments of the redox-sensitive Hsp33 with constitutive chaperone activity.
    Kim SJ; Jeong DG; Chi SW; Lee JS; Ryu SE
    Nat Struct Biol; 2001 May; 8(5):459-66. PubMed ID: 11323724
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones.
    Prodromou C; Siligardi G; O'Brien R; Woolfson DN; Regan L; Panaretou B; Ladbury JE; Piper PW; Pearl LH
    EMBO J; 1999 Feb; 18(3):754-62. PubMed ID: 9927435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insertion of a chaperone domain converts FKBP12 into a powerful catalyst of protein folding.
    Knappe TA; Eckert B; Schaarschmidt P; Scholz C; Schmid FX
    J Mol Biol; 2007 May; 368(5):1458-68. PubMed ID: 17397867
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tah1 helix-swap dimerization prevents mixed Hsp90 co-chaperone complexes.
    Morgan RM; Pal M; Roe SM; Pearl LH; Prodromou C
    Acta Crystallogr D Biol Crystallogr; 2015 May; 71(Pt 5):1197-206. PubMed ID: 25945584
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wrapping the alpha-crystallin domain fold in a chaperone assembly.
    Stamler R; Kappé G; Boelens W; Slingsby C
    J Mol Biol; 2005 Oct; 353(1):68-79. PubMed ID: 16165157
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wheat FKBP73 functions in vitro as a molecular chaperone independently of its peptidyl prolyl cis-trans isomerase activity.
    Kurek I; Pirkl F; Fischer E; Buchner J; Breiman A
    Planta; 2002 May; 215(1):119-26. PubMed ID: 12012248
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of novel sequence motifs within N- and C-terminal extensions of p26, a small heat shock protein from Artemia franciscana.
    Sun Y; MacRae TH
    FEBS J; 2005 Oct; 272(20):5230-43. PubMed ID: 16218954
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Hsp90 cochaperones Cpr6, Cpr7, and Cns1 interact with the intact ribosome.
    Tenge VR; Zuehlke AD; Shrestha N; Johnson JL
    Eukaryot Cell; 2015 Jan; 14(1):55-63. PubMed ID: 25380751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization.
    Haslbeck M; Ignatiou A; Saibil H; Helmich S; Frenzl E; Stromer T; Buchner J
    J Mol Biol; 2004 Oct; 343(2):445-55. PubMed ID: 15451672
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CNS1 encodes an essential p60/Sti1 homolog in Saccharomyces cerevisiae that suppresses cyclophilin 40 mutations and interacts with Hsp90.
    Dolinski KJ; Cardenas ME; Heitman J
    Mol Cell Biol; 1998 Dec; 18(12):7344-52. PubMed ID: 9819421
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NMR solution structure of SlyD from Escherichia coli: spatial separation of prolyl isomerase and chaperone function.
    Weininger U; Haupt C; Schweimer K; Graubner W; Kovermann M; Brüser T; Scholz C; Schaarschmidt P; Zoldak G; Schmid FX; Balbach J
    J Mol Biol; 2009 Mar; 387(2):295-305. PubMed ID: 19356587
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A family of cyclophilin-like molecular chaperones in Plasmodium falciparum.
    Marín-Menéndez A; Monaghan P; Bell A
    Mol Biochem Parasitol; 2012 Jul; 184(1):44-7. PubMed ID: 22546550
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gene expression and biochemical characterization of Azotobacter vinelandii cyclophilins and Protein Interaction Studies of the cytoplasmic isoform with dnaK and lpxH.
    Dimou M; Venieraki A; Liakopoulos G; Kouri ED; Tampakaki A; Katinakis P
    J Mol Microbiol Biotechnol; 2011; 20(3):176-90. PubMed ID: 21734408
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chaperone-interacting TPR proteins in Caenorhabditis elegans.
    Haslbeck V; Eckl JM; Kaiser CJ; Papsdorf K; Hessling M; Richter K
    J Mol Biol; 2013 Aug; 425(16):2922-39. PubMed ID: 23727266
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cdc37 maintains cellular viability in Schizosaccharomyces pombe independently of interactions with heat-shock protein 90.
    Turnbull EL; Martin IV; Fantes PA
    FEBS J; 2005 Aug; 272(16):4129-40. PubMed ID: 16098195
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional interactions between Hsp90 and the co-chaperones Cns1 and Cpr7 in Saccharomyces cerevisiae.
    Tesic M; Marsh JA; Cullinan SB; Gaber RF
    J Biol Chem; 2003 Aug; 278(35):32692-701. PubMed ID: 12788914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Domain-mediated dimerization of the Hsp90 cochaperones Harc and Cdc37.
    Roiniotis J; Masendycz P; Ho S; Scholz GM
    Biochemistry; 2005 May; 44(17):6662-9. PubMed ID: 15850399
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of FKBP51/FKBP52 chimeras and mutants for Hsp90 binding and association with progesterone receptor complexes.
    Barent RL; Nair SC; Carr DC; Ruan Y; Rimerman RA; Fulton J; Zhang Y; Smith DF
    Mol Endocrinol; 1998 Mar; 12(3):342-54. PubMed ID: 9514152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.