These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 16650528)
1. Treatment of nitrophenols by cathode reduction and electro-Fenton methods. Yuan S; Tian M; Cui Y; Lin L; Lu X J Hazard Mater; 2006 Sep; 137(1):573-80. PubMed ID: 16650528 [TBL] [Abstract][Full Text] [Related]
2. A dual-cathode electro-Fenton oxidation coupled with anodic oxidation system used for 4-nitrophenol degradation. Chu YY; Qian Y; Wang WJ; Deng XL J Hazard Mater; 2012 Jan; 199-200():179-85. PubMed ID: 22104767 [TBL] [Abstract][Full Text] [Related]
3. Enhancing the performance of electro-peroxone by incorporation of UV irradiation and BDD anodes. Bensalah N; Bedoui A Environ Technol; 2017 Dec; 38(23):2979-2987. PubMed ID: 28097924 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical degradation of p-nitrophenol with different processes. Jiang P; Zhou J; Zhang A; Zhong Y J Environ Sci (China); 2010; 22(4):500-6. PubMed ID: 20617724 [TBL] [Abstract][Full Text] [Related]
5. Enhanced degradation of 4-nitrophenol by microwave assisted Fe/EDTA process. Liu B; Li S; Zhao Y; Wu W; Zhang X; Gu X; Li R; Yang S J Hazard Mater; 2010 Apr; 176(1-3):213-9. PubMed ID: 19969414 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of a double-layer membrane cathode based on modified carbon nanotubes for the sequential electro-Fenton oxidation of p-nitrophenol. Tang Q; Li B; Ma W; Gao H; Zhou H; Yang C; Gao Y; Wang D Environ Sci Pollut Res Int; 2020 May; 27(15):18773-18783. PubMed ID: 32207003 [TBL] [Abstract][Full Text] [Related]
7. Investigation of the effect of different electrodes and their connections on the removal efficiency of 4-nitrophenol from aqueous solution by electrocoagulation. Modirshahla N; Behnajady MA; Mohammadi-Aghdam S J Hazard Mater; 2008 Jun; 154(1-3):778-86. PubMed ID: 18162293 [TBL] [Abstract][Full Text] [Related]
8. Degradation of pharmaceutical beta-blockers by electrochemical advanced oxidation processes using a flow plant with a solar compound parabolic collector. Isarain-Chávez E; Rodríguez RM; Cabot PL; Centellas F; Arias C; Garrido JA; Brillas E Water Res; 2011 Aug; 45(14):4119-30. PubMed ID: 21693380 [TBL] [Abstract][Full Text] [Related]
9. Kinetics of 2,6-dimethylaniline degradation by electro-Fenton process. Ting WP; Lu MC; Huang YH J Hazard Mater; 2009 Jan; 161(2-3):1484-90. PubMed ID: 18554787 [TBL] [Abstract][Full Text] [Related]
10. Photooxidative degradation of 4-nitrophenol (4-NP) in UV/H2O2 process: influence of operational parameters and reaction mechanism. Daneshvar N; Behnajady MA; Zorriyeh Asghar Y J Hazard Mater; 2007 Jan; 139(2):275-9. PubMed ID: 16860469 [TBL] [Abstract][Full Text] [Related]
11. Electrochemical degradation of m-cresol using porous carbon-nanotube-containing cathode and Ti/SnO2-Sb2O5-IrO2 anode: kinetics, byproducts and biodegradability. Chu Y; Zhang D; Liu L; Qian Y; Li L J Hazard Mater; 2013 May; 252-253():306-12. PubMed ID: 23548920 [TBL] [Abstract][Full Text] [Related]
12. Comparison of various advanced oxidation processes for the degradation of 4-chloro-2 nitrophenol. Saritha P; Aparna C; Himabindu V; Anjaneyulu Y J Hazard Mater; 2007 Nov; 149(3):609-14. PubMed ID: 17703880 [TBL] [Abstract][Full Text] [Related]
13. Advanced electro-Fenton degradation of biologically-treated coking wastewater using anthraquinone cathode and Fe-Y catalyst. Li H; Li Y; Cao H; Li X; Zhang Y Water Sci Technol; 2011; 64(1):63-9. PubMed ID: 22053459 [TBL] [Abstract][Full Text] [Related]
14. [Effects of different co-substrates on degradation of nitrophenols using upflow anaerobic sludge bed (UASB) reactors]. Jiang LN; She ZL; Jin CJ; Wang L; Yu J Huan Jing Ke Xue; 2007 Oct; 28(10):2230-5. PubMed ID: 18268984 [TBL] [Abstract][Full Text] [Related]
16. The application of exfoliated graphite electrode in the electrochemical degradation of p-nitrophenol in water. Ntsendwana B; Peleyeju MG; Arotiba OA J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(7):571-8. PubMed ID: 26979139 [TBL] [Abstract][Full Text] [Related]
17. Role of molecular structure on bioelectrochemical reduction of mononitrophenols from wastewater. Shen J; Zhang Y; Xu X; Hua C; Sun X; Li J; Mu Y; Wang L Water Res; 2013 Oct; 47(15):5511-9. PubMed ID: 23863387 [TBL] [Abstract][Full Text] [Related]
18. Anodic oxidation of o-nitrophenol on BDD electrode: variable effects and mechanisms of degradation. Rabaaoui N; Saad Mel K; Moussaoui Y; Allagui MS; Bedoui A; Elaloui E J Hazard Mater; 2013 Apr; 250-251():447-53. PubMed ID: 23500425 [TBL] [Abstract][Full Text] [Related]
19. Investigation of the efficiency of a tubular continuous-flow photoreactor with supported titanium dioxide nanoparticles in the removal of 4-nitrophenol: operational parameters, kinetics analysis and mineralization studies. Behnajady MA; Amirmohammadi-Sorkhabi S; Modirshahla N; Shokri M Water Sci Technol; 2011; 64(1):56-62. PubMed ID: 22053458 [TBL] [Abstract][Full Text] [Related]
20. Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide. Guinea E; Arias C; Cabot PL; Garrido JA; Rodríguez RM; Centellas F; Brillas E Water Res; 2008 Jan; 42(1-2):499-511. PubMed ID: 17692891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]