BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 16650581)

  • 1. Midbrain control of spinal nociception discriminates between responses evoked by myelinated and unmyelinated heat nociceptors in the rat.
    McMullan S; Lumb BM
    Pain; 2006 Sep; 124(1-2):59-68. PubMed ID: 16650581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A reliable method for the preferential activation of C- or A-fibre heat nociceptors.
    McMullan S; Simpson DA; Lumb BM
    J Neurosci Methods; 2004 Sep; 138(1-2):133-9. PubMed ID: 15325121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anterior cingulate cortex contributes to the descending facilitatory modulation of pain via dorsal reticular nucleus.
    Zhang L; Zhang Y; Zhao ZQ
    Eur J Neurosci; 2005 Sep; 22(5):1141-8. PubMed ID: 16176356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Descending control of spinal nociception from the periaqueductal grey distinguishes between neurons with and without C-fibre inputs.
    Waters AJ; Lumb BM
    Pain; 2008 Jan; 134(1-2):32-40. PubMed ID: 17467173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation of A- versus C-nociceptive inputs into spinal-brainstem circuits.
    Parry DM; Macmillan FM; Koutsikou S; McMullan S; Lumb BM
    Neuroscience; 2008 Apr; 152(4):1076-85. PubMed ID: 18328632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spinal dorsal horn neuronal responses to myelinated versus unmyelinated heat nociceptors and their modulation by activation of the periaqueductal grey in the rat.
    McMullan S; Lumb BM
    J Physiol; 2006 Oct; 576(Pt 2):547-56. PubMed ID: 16916903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laminar organization of spinal dorsal horn neurones activated by C- vs. A-heat nociceptors and their descending control from the periaqueductal grey in the rat.
    Koutsikou S; Parry DM; MacMillan FM; Lumb BM
    Eur J Neurosci; 2007 Aug; 26(4):943-52. PubMed ID: 17714188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periaqueductal grey cyclooxygenase-dependent facilitation of C-nociceptive drive and encoding in dorsal horn neurons in the rat.
    Leith JL; Wilson AW; You HJ; Lumb BM; Donaldson LF
    J Physiol; 2014 Nov; 592(22):5093-107. PubMed ID: 25239460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclooxygenase-1-derived prostaglandins in the periaqueductal gray differentially control C- versus A-fiber-evoked spinal nociception.
    Leith JL; Wilson AW; Donaldson LF; Lumb BM
    J Neurosci; 2007 Oct; 27(42):11296-305. PubMed ID: 17942724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective inhibition from the anterior hypothalamus of C- versus A-fibre mediated spinal nociception.
    Simpson DAA; Headley MP; Lumb BM
    Pain; 2008 Jun; 136(3):305-312. PubMed ID: 17822851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Innocuous skin cooling modulates perception and neurophysiological correlates of brief CO2 laser stimuli in humans.
    Nahra H; Plaghki L
    Eur J Pain; 2005 Oct; 9(5):521-30. PubMed ID: 16139181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periaqueductal Grey EP3 Receptors Facilitate Spinal Nociception in Arthritic Secondary Hypersensitivity.
    Drake RA; Leith JL; Almahasneh F; Martindale J; Wilson AW; Lumb B; Donaldson LF
    J Neurosci; 2016 Aug; 36(35):9026-40. PubMed ID: 27581447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical and heat sensitization of cutaneous nociceptors in rats with experimental peripheral neuropathy.
    Shim B; Kim DW; Kim BH; Nam TS; Leem JW; Chung JM
    Neuroscience; 2005; 132(1):193-201. PubMed ID: 15780478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of a specific spinal pathway for the sense of warmth in humans.
    Iannetti GD; Truini A; Romaniello A; Galeotti F; Rizzo C; Manfredi M; Cruccu G
    J Neurophysiol; 2003 Jan; 89(1):562-70. PubMed ID: 12522202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous discharge and increased heat sensitivity of rat C-fiber nociceptors are present in vitro after plantar incision.
    Banik RK; Brennan TJ
    Pain; 2004 Nov; 112(1-2):204-13. PubMed ID: 15494202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of 5-HT(1B/1D) receptor in the periaqueductal gray inhibits nociception.
    Bartsch T; Knight YE; Goadsby PJ
    Ann Neurol; 2004 Sep; 56(3):371-81. PubMed ID: 15349864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of GABA and opioid peptide receptors in sevoflurane-induced antinociception in rat spinal cord.
    Wang YW; Deng XM; You XM; Liu SX; Zhao ZQ
    Acta Pharmacol Sin; 2005 Sep; 26(9):1045-8. PubMed ID: 16115369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of nociceptive dural input in the trigeminal nucleus caudalis by somatostatin receptor blockade in the posterior hypothalamus.
    Bartsch T; Levy MJ; Knight YE; Goadsby PJ
    Pain; 2005 Sep; 117(1-2):30-9. PubMed ID: 16043293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of dorsal periaqueductal gray activation on respiratory occlusion reflexes in rats.
    Zhang W; Hayward LF; Davenport PW
    Auton Neurosci; 2009 Oct; 150(1-2):62-9. PubMed ID: 19464236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-trial detection of human brain responses evoked by laser activation of Adelta-nociceptors using the wavelet transform of EEG epochs.
    Mouraux A; Plaghki L
    Neurosci Lett; 2004 May; 361(1-3):241-4. PubMed ID: 15135938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.