These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 16651559)
1. Color discrimination in the red range with only one long-wavelength sensitive opsin. Zaccardi G; Kelber A; Sison-Mangus MP; Briscoe AD J Exp Biol; 2006 May; 209(Pt 10):1944-55. PubMed ID: 16651559 [TBL] [Abstract][Full Text] [Related]
2. The lycaenid butterfly Polyommatus icarus uses a duplicated blue opsin to see green. Sison-Mangus MP; Briscoe AD; Zaccardi G; Knüttel H; Kelber A J Exp Biol; 2008 Feb; 211(Pt 3):361-9. PubMed ID: 18203991 [TBL] [Abstract][Full Text] [Related]
3. Reconstructing the ancestral butterfly eye: focus on the opsins. Briscoe AD J Exp Biol; 2008 Jun; 211(Pt 11):1805-13. PubMed ID: 18490396 [TBL] [Abstract][Full Text] [Related]
4. Beauty in the eye of the beholder: the two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes. Sison-Mangus MP; Bernard GD; Lampel J; Briscoe AD J Exp Biol; 2006 Aug; 209(Pt 16):3079-90. PubMed ID: 16888057 [TBL] [Abstract][Full Text] [Related]
5. A unique visual pigment expressed in green, red and deep-red receptors in the eye of the small white butterfly, Pieris rapae crucivora. Wakakuwa M; Stavenga DG; Kurasawa M; Arikawa K J Exp Biol; 2004 Jul; 207(Pt 16):2803-10. PubMed ID: 15235009 [TBL] [Abstract][Full Text] [Related]
6. Mix and match color vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids. Parry JW; Carleton KL; Spady T; Carboo A; Hunt DM; Bowmaker JK Curr Biol; 2005 Oct; 15(19):1734-9. PubMed ID: 16213819 [TBL] [Abstract][Full Text] [Related]
7. Molecular evolution of bat color vision genes. Wang D; Oakley T; Mower J; Shimmin LC; Yim S; Honeycutt RL; Tsao H; Li WH Mol Biol Evol; 2004 Feb; 21(2):295-302. PubMed ID: 14660703 [TBL] [Abstract][Full Text] [Related]
8. Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation. Chang BS; Crandall KA; Carulli JP; Hartl DL Mol Phylogenet Evol; 1995 Mar; 4(1):31-43. PubMed ID: 7620634 [TBL] [Abstract][Full Text] [Related]
9. Sexual dimorphism in the compound eye of Heliconius erato: a nymphalid butterfly with at least five spectral classes of photoreceptor. McCulloch KJ; Osorio D; Briscoe AD J Exp Biol; 2016 Aug; 219(Pt 15):2377-87. PubMed ID: 27247318 [TBL] [Abstract][Full Text] [Related]
10. Spectral organization of ommatidia in flower-visiting insects. Wakakuwa M; Stavenga DG; Arikawa K Photochem Photobiol; 2007; 83(1):27-34. PubMed ID: 16930092 [TBL] [Abstract][Full Text] [Related]
11. Not all butterfly eyes are created equal: rhodopsin absorption spectra, molecular identification, and localization of ultraviolet-, blue-, and green-sensitive rhodopsin-encoding mRNAs in the retina of Vanessa cardui. Briscoe AD; Bernard GD; Szeto AS; Nagy LM; White RH J Comp Neurol; 2003 Apr; 458(4):334-49. PubMed ID: 12619069 [TBL] [Abstract][Full Text] [Related]
12. Eyeshine and spectral tuning of long wavelength-sensitive rhodopsins: no evidence for red-sensitive photoreceptors among five Nymphalini butterfly species. Briscoe AD; Bernard GD J Exp Biol; 2005 Feb; 208(Pt 4):687-96. PubMed ID: 15695761 [TBL] [Abstract][Full Text] [Related]
13. Demonstration of a genotype-phenotype correlation in the polymorphic color vision of a non-callitrichine New World monkey, capuchin (Cebus apella). Saito A; Kawamura S; Mikami A; Ueno Y; Hiramatsu C; Koida K; Fujita K; Kuroshima H; Hasegawa T Am J Primatol; 2005 Dec; 67(4):471-85. PubMed ID: 16342070 [TBL] [Abstract][Full Text] [Related]
14. Signatures of functional constraint at aye-aye opsin genes: the potential of adaptive color vision in a nocturnal primate. Perry GH; Martin RD; Verrelli BC Mol Biol Evol; 2007 Sep; 24(9):1963-70. PubMed ID: 17575304 [TBL] [Abstract][Full Text] [Related]
15. Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA. Odeen A; Hastad O Mol Biol Evol; 2003 Jun; 20(6):855-61. PubMed ID: 12716987 [TBL] [Abstract][Full Text] [Related]
16. Molecular characterization and expression of the UV opsin in bumblebees: three ommatidial subtypes in the retina and a new photoreceptor organ in the lamina. Spaethe J; Briscoe AD J Exp Biol; 2005 Jun; 208(Pt 12):2347-61. PubMed ID: 15939775 [TBL] [Abstract][Full Text] [Related]
17. Identification and characterization of visual pigments in caecilians (Amphibia: Gymnophiona), an order of limbless vertebrates with rudimentary eyes. Mohun SM; Davies WL; Bowmaker JK; Pisani D; Himstedt W; Gower DJ; Hunt DM; Wilkinson M J Exp Biol; 2010 Oct; 213(Pt 20):3586-92. PubMed ID: 20889838 [TBL] [Abstract][Full Text] [Related]
18. Eye and vision in the subterranean rodent cururo (Spalacopus cyanus, Octodontidae). Peichl L; Chavez AE; Ocampo A; Mena W; Bozinovic F; Palacios AG J Comp Neurol; 2005 Jun; 486(3):197-208. PubMed ID: 15844175 [TBL] [Abstract][Full Text] [Related]
19. Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies. Briscoe AD; Bybee SM; Bernard GD; Yuan F; Sison-Mangus MP; Reed RD; Warren AD; Llorente-Bousquets J; Chiao CC Proc Natl Acad Sci U S A; 2010 Feb; 107(8):3628-33. PubMed ID: 20133601 [TBL] [Abstract][Full Text] [Related]
20. Molecular characterization of crustacean visual pigments and the evolution of pancrustacean opsins. Porter ML; Cronin TW; McClellan DA; Crandall KA Mol Biol Evol; 2007 Jan; 24(1):253-68. PubMed ID: 17053049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]