These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 16652129)

  • 21. Modeling energy expenditure in children and adolescents using quantile regression.
    Yang Y; Adolph AL; Puyau MR; Vohra FA; Butte NF; Zakeri IF
    J Appl Physiol (1985); 2013 Jul; 115(2):251-9. PubMed ID: 23640591
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Day and night changes in energy expenditure of patients on automated peritoneal dialysis.
    Aniort J; Montaurier C; Poyet A; Meunier N; Piraud A; Aguilera D; Bouiller M; Enache I; Ali Y; Jouve C; Blot A; Farigon N; Cano N; Boirie Y; Richard R; Heng AE
    Clin Nutr; 2021 May; 40(5):3454-3461. PubMed ID: 33288303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy expenditure estimate by heart-rate monitor and a portable electromagnetic coils system.
    Gastinger S; Nicolas G; Sorel A; Sefati H; Prioux J
    Int J Sport Nutr Exerc Metab; 2012 Apr; 22(2):117-30. PubMed ID: 22349175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving energy expenditure estimation by using a triaxial accelerometer.
    Chen KY; Sun M
    J Appl Physiol (1985); 1997 Dec; 83(6):2112-22. PubMed ID: 9390989
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heart rate recording method validated by whole body indirect calorimetry in 10-yr-old children.
    Bitar A; Vermorel M; Fellmann N; Bedu M; Chamoux A; Coudert J
    J Appl Physiol (1985); 1996 Sep; 81(3):1169-73. PubMed ID: 8889750
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents.
    Zakeri IF; Adolph AL; Puyau MR; Vohra FA; Butte NF
    J Appl Physiol (1985); 2010 Jan; 108(1):128-36. PubMed ID: 19892930
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Free-living energy expenditure assessed by two different methods in rural Gambian men.
    Heini AF; Minghelli G; Diaz E; Prentice AM; Schutz Y
    Eur J Clin Nutr; 1996 May; 50(5):284-9. PubMed ID: 8735308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energy expenditure in children predicted from heart rate and activity calibrated against respiration calorimetry.
    Treuth MS; Adolph AL; Butte NF
    Am J Physiol; 1998 Jul; 275(1):E12-8. PubMed ID: 9688868
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activity diary method for predicting energy expenditure as evaluated by a whole-body indirect human calorimeter.
    Yamamura C; Tanaka S; Futami J; Oka J; Ishikawa-Takata K; Kashiwazaki H
    J Nutr Sci Vitaminol (Tokyo); 2003 Aug; 49(4):262-9. PubMed ID: 14598913
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tracmor system for measuring walking energy expenditure.
    Levine J; Melanson EL; Westerterp KR; Hill JO
    Eur J Clin Nutr; 2003 Sep; 57(9):1176-80. PubMed ID: 12947439
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimating energy expenditure using heat flux measured at a single body site.
    Lyden K; Swibas T; Catenacci V; Guo R; Szuminsky N; Melanson EL
    Med Sci Sports Exerc; 2014 Nov; 46(11):2159-67. PubMed ID: 24811326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hand-held indirect calorimeter offers advantages compared with prediction equations, in a group of overweight women, to determine resting energy expenditures and estimated total energy expenditures during research screening.
    Spears KE; Kim H; Behall KM; Conway JM
    J Am Diet Assoc; 2009 May; 109(5):836-45. PubMed ID: 19394470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polar Activity Watch 200: a new device to accurately assess energy expenditure.
    Brugniaux JV; Niva A; Pulkkinen I; Laukkanen RM; Richalet JP; Pichon AP
    Br J Sports Med; 2010 Mar; 44(4):245-9. PubMed ID: 18413338
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimating relative physical workload using heart rate monitoring: a validation by whole-body indirect calorimetry.
    Garet M; Boudet G; Montaurier C; Vermorel M; Coudert J; Chamoux A
    Eur J Appl Physiol; 2005 May; 94(1-2):46-53. PubMed ID: 15609030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The assessment of 24-hour energy expenditure in elderly women by minute-by-minute heart rate monitoring.
    Rutgers CJ; Klijn MJ; Deurenberg P
    Ann Nutr Metab; 1997; 41(2):83-8. PubMed ID: 9267582
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A moderate dose of caffeine ingestion does not change energy expenditure but decreases sleep time in physically active males: a double-blind randomized controlled trial.
    Júdice PB; Magalhães JP; Santos DA; Matias CN; Carita AI; Armada-Da-Silva PA; Sardinha LB; Silva AM
    Appl Physiol Nutr Metab; 2013 Jan; 38(1):49-56. PubMed ID: 23368828
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heart rate measurements as an index of energy expenditure and energy balance in ruminants: a review.
    Brosh A
    J Anim Sci; 2007 May; 85(5):1213-27. PubMed ID: 17224466
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new hand-held indirect calorimeter to measure postprandial energy expenditure.
    St-Onge MP; Rubiano F; Jones A; Heymsfield SB
    Obes Res; 2004 Apr; 12(4):704-9. PubMed ID: 15090640
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measuring energy expenditure in community-dwelling older adults: are portable methods valid and acceptable?
    Fares S; Miller MD; Masters S; Crotty M
    J Am Diet Assoc; 2008 Mar; 108(3):544-8. PubMed ID: 18313438
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Indirect calorimetry in critically ill mechanically ventilated patients: Comparison of E-sCOVX with the deltatrac.
    Stapel SN; Weijs PJM; Girbes ARJ; Oudemans-van Straaten HM
    Clin Nutr; 2019 Oct; 38(5):2155-2160. PubMed ID: 30245021
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.