These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 16652964)
21. Electrophoretic and immunological comparisons of chloroplast and prokaryotic ribosomal proteins reveal that certain families of large subunit proteins are evolutionarily conserved. Randolph-Anderson BL; Gillham NW; Boynton JE J Mol Evol; 1989 Jul; 29(1):68-88. PubMed ID: 2504932 [TBL] [Abstract][Full Text] [Related]
22. Chloroplast Respiration : A MEANS OF SUPPLYING OXIDIZED PYRIDINE NUCLEOTIDE FOR DARK CHLOROPLASTIC METABOLISM. Kow YW; Erbes DL; Gibbs M Plant Physiol; 1982 Feb; 69(2):442-7. PubMed ID: 16662226 [TBL] [Abstract][Full Text] [Related]
23. Isolation and characterization of a cDNA encoding the SecA protein from spinach chloroplasts. Evidence for azide resistance of Sec-dependent protein translocation across thylakoid membranes in spinach. Berghöfer J; Karnauchov I; Herrmann RG; Klösgen RB J Biol Chem; 1995 Aug; 270(31):18341-6. PubMed ID: 7629156 [TBL] [Abstract][Full Text] [Related]
24. The atpF group-II intron-containing gene from spinach chloroplasts is not spliced in transgenic Chlamydomonas chloroplasts. Deshpande NN; Hollingsworth M; Herrin DL Curr Genet; 1995 Jul; 28(2):122-7. PubMed ID: 8590462 [TBL] [Abstract][Full Text] [Related]
25. Inhibition of photosynthetic carbon dioxide fixation in isolated spinach chloroplasts exposed to reduced osmotic potentials. Plaut Z Plant Physiol; 1971 Nov; 48(5):591-5. PubMed ID: 16657842 [TBL] [Abstract][Full Text] [Related]
26. mRNA imaging in the chloroplast of Chlamydomonas reinhardtii using the light-up aptamer Spinach. Guzmán-Zapata D; Domínguez-Anaya Y; Macedo-Osorio KS; Tovar-Aguilar A; Castrejón-Flores JL; Durán-Figueroa NV; Badillo-Corona JA J Biotechnol; 2017 Jun; 251():186-188. PubMed ID: 28359866 [TBL] [Abstract][Full Text] [Related]
27. Cross-reconstitution of the extrinsic proteins and photosystem II complexes from Chlamydomonas reinhardtii and Spinacia oleracea. Suzuki T; Ohta H; Enami I Photosynth Res; 2005 Jun; 84(1-3):239-44. PubMed ID: 16049780 [TBL] [Abstract][Full Text] [Related]
28. Peculiar properties of the PsaF photosystem I protein from the green alga Chlamydomonas reinhardtii: presequence independent import of the PsaF protein into both chloroplasts and mitochondria. Hugosson M; Nurani G; Glaser E; Franzén LG Plant Mol Biol; 1995 Jun; 28(3):525-35. PubMed ID: 7632921 [TBL] [Abstract][Full Text] [Related]
29. Association of glycolate oxidation with photosynthetic electron transport in plant and algal chloroplasts. Goyal A; Tolbert NE Proc Natl Acad Sci U S A; 1996 Apr; 93(8):3319-24. PubMed ID: 11607648 [TBL] [Abstract][Full Text] [Related]
30. Dependence of nitrite reduction on electron transport chloroplasts. Neyra CA; Hageman RH Plant Physiol; 1974 Oct; 54(4):480-3. PubMed ID: 16658912 [TBL] [Abstract][Full Text] [Related]
31. Regulation of Photosynthetic Electron Transport in Intact Spinach Chloroplasts: I. INFLUENCE OF EXOGENOUS SALTS ON OXALOACETATE REDUCTION. Marsho TV; Sokolove PM; Mackay AB Plant Physiol; 1980 Apr; 65(4):703-6. PubMed ID: 16661265 [TBL] [Abstract][Full Text] [Related]
32. The ferredoxin-thioredoxin system of a green alga, Chlamydomonas reinhardtii: identification and characterization of thioredoxins and ferredoxin-thioredoxin reductase components. Huppe HC; de Lamotte-Guéry F; Jacquot J-P ; Buchanan BB Planta; 1990; 180():341-51. PubMed ID: 11538175 [TBL] [Abstract][Full Text] [Related]
33. Inhibition of photosynthesis by oxygen in isolated spinach chloroplasts. Ellyard PW; Gibbs M Plant Physiol; 1969 Aug; 44(8):1115-21. PubMed ID: 16657176 [TBL] [Abstract][Full Text] [Related]
34. The effect of low osmotic potential on nitrite reduction in intact spinach chloroplasts. Behrens PW; Xu F; Werner M; Hoffman T; Marsho TV; Mackay AB Plant Physiol; 1985 Oct; 79(2):441-4. PubMed ID: 16664429 [TBL] [Abstract][Full Text] [Related]
35. Organization of Electron Transport in Photosystem II of Spinach Chloroplasts According to Chelator Inhibition Sites. Barr R; Crane FL Plant Physiol; 1976 Mar; 57(3):450-3. PubMed ID: 16659501 [TBL] [Abstract][Full Text] [Related]
36. Pyrophosphate inhibition of carbon dioxide fixation in isolated pea chloroplasts by uptake in exchange for endogenous adenine nucleotides. Robinson SP; Wiskich JT Plant Physiol; 1977 Mar; 59(3):422-7. PubMed ID: 16659865 [TBL] [Abstract][Full Text] [Related]
37. Relationship between the Level of Adenine Nucleotides and the Carboxylation Activity of Illuminated Isolated Spinach Chloroplasts: A Study with Antimycin A. Miginiac-Maslow M; Champigny ML Plant Physiol; 1974 Jun; 53(6):856-62. PubMed ID: 16658804 [TBL] [Abstract][Full Text] [Related]
38. Involvement of Photosynthetic Carbon Reduction Cycle Intermediates in CO(2) Fixation and O(2) Evolution by Isolated Chloroplasts. Schacter B; Eley JH; Gibbs M Plant Physiol; 1971 Dec; 48(6):707-11. PubMed ID: 16657865 [TBL] [Abstract][Full Text] [Related]
39. Electron transport pathways in spinach chloroplasts. Reduction of the primary acceptor of photosystem II by reduced nicotinamide adenine dinucleotide phosphate in the dark. Mills JD; Crowther D; Slovacek RE; Hind G; McCarty RE Biochim Biophys Acta; 1979 Jul; 547(1):127-37. PubMed ID: 37900 [TBL] [Abstract][Full Text] [Related]
40. Stimulation of carbon dioxide fixation in isolated pea chloroplasts by catalytic amounts of adenine nucleotides. Robinson SP; Wiskich JT Plant Physiol; 1976 Aug; 58(2):156-62. PubMed ID: 16659638 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]