These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 16652982)

  • 1. Short-term effects of rhizosphere microorganisms on fe uptake from microbial siderophores by maize and oat.
    Bar-Ness E; Hadar Y; Chen Y; Römheld V; Marschner H
    Plant Physiol; 1992 Sep; 100(1):451-6. PubMed ID: 16652982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron Inefficiency in Maize Mutant ys1 (Zea mays L. cv Yellow-Stripe) Is Caused by a Defect in Uptake of Iron Phytosiderophores.
    Von Wiren N; Mori S; Marschner H; Romheld V
    Plant Physiol; 1994 Sep; 106(1):71-77. PubMed ID: 12232304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competition between micro-organisms and roots of barley and sorghum for iron accumulated in the root apoplasm.
    Wirén NV; Römheld V; Shioiri T; Marschner H
    New Phytol; 1995 Aug; 130(4):511-521. PubMed ID: 33874479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of microbial siderophores in iron acquisition by oat.
    Crowley DE; Reid CP; Szaniszlo PJ
    Plant Physiol; 1988 Jul; 87(3):680-5. PubMed ID: 16666207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron uptake by plants from microbial siderophores : a study with 7-nitrobenz-2 oxa-1,3-diazole-desferrioxamine as fluorescent ferrioxamine B analog.
    Bar-Ness E; Hadar Y; Chen Y; Shanzer A; Libman J
    Plant Physiol; 1992 Aug; 99(4):1329-35. PubMed ID: 16669040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Ligand Exchange in the Uptake of Iron from Microbial Siderophores by Gramineous Plants.
    Yehuda Z; Shenker M; Romheld V; Marschner H; Hadar Y; Chen Y
    Plant Physiol; 1996 Nov; 112(3):1273-1280. PubMed ID: 12226445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic Interactions between
    Boiteau RM; Markillie LM; Hoyt DW; Hu D; Chu RK; Mitchell HD; Pasa-Tolic L; Jansson JK; Jansson C
    mSystems; 2021 Jan; 6(1):. PubMed ID: 33402348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential siderophore utilization and iron uptake by soil and rhizosphere bacteria.
    Jurkevitch E; Hadar Y; Chen Y
    Appl Environ Microbiol; 1992 Jan; 58(1):119-24. PubMed ID: 16348618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of nitrogen on root release of phytosiderophores and root uptake of Fe(III)-phytosiderophore in Fe-deficient wheat plants.
    Aciksoz SB; Ozturk L; Gokmen OO; Römheld V; Cakmak I
    Physiol Plant; 2011 Jul; 142(3):287-96. PubMed ID: 21338370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interspecific root interactions and rhizosphere effects on salt ions and nutrient uptake between mixed grown peanut/maize and peanut/barley in original saline-sodic-boron toxic soil.
    Inal A; Gunes A
    J Plant Physiol; 2008; 165(5):490-503. PubMed ID: 17698244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses.
    Römheld V; Marschner H
    Plant Physiol; 1986 Jan; 80(1):175-80. PubMed ID: 16664577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fusarinines and dimerum acid, mono- and dihydroxamate siderophores from Penicillium chrysogenum, improve iron utilization by strategy I and strategy II plants.
    Hördt W; Römheld V; Winkelmann G
    Biometals; 2000 Mar; 13(1):37-46. PubMed ID: 10831223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the root apoplasm for iron acquisition by wheat plants.
    Zhang FS; Römheld V; Marschner H
    Plant Physiol; 1991 Dec; 97(4):1302-5. PubMed ID: 16668547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of microbially enhanced Fe acquisition in red clover (Trifolium pratense L.).
    Jin CW; He YF; Tang CX; Wu P; Zheng SJ
    Plant Cell Environ; 2006 May; 29(5):888-97. PubMed ID: 17087472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants.
    Pii Y; Penn A; Terzano R; Crecchio C; Mimmo T; Cesco S
    Plant Physiol Biochem; 2015 Feb; 87():45-52. PubMed ID: 25544744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effects of soil pH on the competitive uptake of amino acids by maize and microorganisms].
    Ma QX; Wang J; Cao XC; Sun Y; Sun T; Wu LH
    Ying Yong Sheng Tai Xue Bao; 2017 Jul; 28(7):2277-2384. PubMed ID: 29741060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced Cd accumulation in Zea mays: a protective role for phytosiderophores?
    Hill KA; Lion LW; Ahner BA
    Environ Sci Technol; 2002 Dec; 36(24):5363-8. PubMed ID: 12521162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere.
    Loper JE; Henkels MD
    Appl Environ Microbiol; 1999 Dec; 65(12):5357-63. PubMed ID: 10583989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indirect utilization of the phytosiderophore mugineic acid as an iron source to rhizosphere fluorescent Pseudomonas.
    Jurkevitch E; Hadar Y; Chen Y; Chino M; Mori S
    Biometals; 1993; 6(2):119-23. PubMed ID: 8358206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional and physiological analyses of Fe deficiency response in maize reveal the presence of Strategy I components and Fe/P interactions.
    Zanin L; Venuti S; Zamboni A; Varanini Z; Tomasi N; Pinton R
    BMC Genomics; 2017 Feb; 18(1):154. PubMed ID: 28193158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.