These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 16653035)

  • 1. Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species.
    Sperry JS; Sullivan JE
    Plant Physiol; 1992 Oct; 100(2):605-13. PubMed ID: 16653035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of freeze-thaw-induced pit aspiration on stem water transport in the subalpine conifer Abies veitchii.
    Taneda H; Ogasa MY; Yazaki K; Funayama-Noguchi S; Miyazawa Y; Mayr S; Maruta E
    Plant Physiol; 2022 Oct; 190(3):1687-1698. PubMed ID: 35997583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers.
    Pittermann J; Sperry J
    Tree Physiol; 2003 Sep; 23(13):907-14. PubMed ID: 14532014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of freeze-thaw embolism in conifers. The interaction between cavitation pressure and tracheid size.
    Pittermann J; Sperry JS
    Plant Physiol; 2006 Jan; 140(1):374-82. PubMed ID: 16377751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frost drought in conifers at the alpine timberline: xylem dysfunction and adaptations.
    Mayr S; Hacke U; Schmid P; Schwienbacher F; Gruber A
    Ecology; 2006 Dec; 87(12):3175-85. PubMed ID: 17249241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frost fatigue and its spring recovery of xylem conduits in ring-porous, diffuse-porous, and coniferous species in situ.
    Dai Y; Wang L; Wan X
    Plant Physiol Biochem; 2020 Jan; 146():177-186. PubMed ID: 31756604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repeated freeze-thaw cycles induce embolism in drought stressed conifers (Norway spruce, stone pine).
    Mayr S; Gruber A; Bauer H
    Planta; 2003 Jul; 217(3):436-41. PubMed ID: 14520570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Embolism formation during freezing in the wood of Picea abies.
    Mayr S; Cochard H; Améglio T; Kikuta SB
    Plant Physiol; 2007 Jan; 143(1):60-7. PubMed ID: 17041033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive strategies to freeze-thaw cycles in branch hydraulics of tree species coexisting in a temperate forest.
    Li Z; Luo D; Ibrahim MM; Hou E; Wang C
    Plant Physiol Biochem; 2024 Jan; 206():108223. PubMed ID: 38043252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between xylem conduit diameter and cavitation caused by freezing.
    Davis SD; Sperry JS; Hacke UG
    Am J Bot; 1999 Oct; 86(10):1367-72. PubMed ID: 10523278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydraulic conductivity, photosynthesis and leaf water balance in six evergreen woody species from fall to winter.
    Taneda H; Tateno M
    Tree Physiol; 2005 Mar; 25(3):299-306. PubMed ID: 15631978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xylem dysfunction during winter and recovery of hydraulic conductivity in diffuse-porous and ring-porous trees.
    Hacke U; Sauter JJ
    Oecologia; 1996 Mar; 105(4):435-439. PubMed ID: 28307135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in drought- and freeze-induced embolisms in deciduous ring-porous plant species in Japan.
    Umebayashi T; Utsumi Y; Koga S; Murata I; Fukuda K
    Planta; 2016 Sep; 244(3):753-60. PubMed ID: 27376942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pit aspiration causes an apparent loss of xylem hydraulic conductivity in a subalpine fir (Abies mariesii Mast.) overwintering at the alpine timberline.
    Maruta E; Yazaki K; Ogasa MY; Taneda H
    Tree Physiol; 2022 Jun; 42(6):1228-1238. PubMed ID: 34962267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of summer drought and winter freezing on stem hydraulic conductivity of Rhododendron species from contrasting climates.
    Cordero RA; Nilsen ET
    Tree Physiol; 2002 Sep; 22(13):919-28. PubMed ID: 12204848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A case-study of water transport in co-occurring ring- versus diffuse-porous trees: contrasts in water-status, conducting capacity, cavitation and vessel refilling.
    Taneda H; Sperry JS
    Tree Physiol; 2008 Nov; 28(11):1641-51. PubMed ID: 18765369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of ultrasonic acoustic emissions from walnut branches during freeze-thaw-induced embolism formation.
    Kasuga J; Charrier G; Uemura M; Améglio T
    J Exp Bot; 2015 Apr; 66(7):1965-75. PubMed ID: 25662846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic emissions from conifer xylem exposed to repeated freezing.
    Mayr S; Zublasing V
    J Plant Physiol; 2010 Jan; 167(1):34-40. PubMed ID: 19692146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repair of severe winter xylem embolism supports summer water transport and carbon gain in flagged crowns of the subalpine conifer Abies veitchii.
    Ogasa MY; Taneda H; Ooeda H; Ohtsuka A; Maruta E
    Tree Physiol; 2019 Oct; 39(10):1725-1735. PubMed ID: 31211390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xylem embolism and bubble formation during freezing suggest complex dynamics of pressure in Betula pendula stems.
    Charra-Vaskou K; Lintunen A; Améglio T; Badel E; Cochard H; Mayr S; Salmon Y; Suhonen H; van Rooij M; Charrier G
    J Exp Bot; 2023 Sep; 74(18):5840-5853. PubMed ID: 37463327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.