These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16653068)

  • 1. Characterization of vacuolar calcium-binding proteins.
    Randall SK
    Plant Physiol; 1992 Oct; 100(2):859-67. PubMed ID: 16653068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The plant vacuole: emitter and receiver of calcium signals.
    Peiter E
    Cell Calcium; 2011 Aug; 50(2):120-8. PubMed ID: 21376393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NaCl-elicited, vacuolar Ca(2+) release facilitates prolonged cytosolic Ca(2+) signaling in the salt response of Populus euphratica cells.
    Zhang X; Shen Z; Sun J; Yu Y; Deng S; Li Z; Sun C; Zhang J; Zhao R; Shen X; Chen S
    Cell Calcium; 2015 May; 57(5-6):348-65. PubMed ID: 25840638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inositol 1,4,5-trisphosphate releases Ca2+ from vacuolar membrane vesicles of Saccharomyces cerevisiae.
    Belde PJ; Vossen JH; Borst-Pauwels GW; Theuvenet AP
    FEBS Lett; 1993 May; 323(1-2):113-8. PubMed ID: 8495722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inositol trisphosphate-dependent and -independent Ca2+ mobilization pathways at the vacuolar membrane of Candida albicans.
    Calvert CM; Sanders D
    J Biol Chem; 1995 Mar; 270(13):7272-80. PubMed ID: 7706267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium-sensitive cls mutants of Saccharomyces cerevisiae showing a Pet- phenotype are ascribable to defects of vacuolar membrane H(+)-ATPase activity.
    Ohya Y; Umemoto N; Tanida I; Ohta A; Iida H; Anraku Y
    J Biol Chem; 1991 Jul; 266(21):13971-7. PubMed ID: 1830311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of subcellular fractions and distribution profiles of transport components involved in Ca(2+) homeostasis in rat vas deferens.
    Scaramello CB; Cunha VM; Rodriguez JB; Noël F
    J Pharmacol Toxicol Methods; 2002; 47(2):93-8. PubMed ID: 12459148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcellular localization of a high affinity binding site for D-myo-inositol 1,4,5-trisphosphate from Chenopodium rubrum.
    Martinec J; Feltl T; Scanlon CH; Lumsden PJ; Machácková I
    Plant Physiol; 2000 Sep; 124(1):475-83. PubMed ID: 10982460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological characterization of inositol 1,4,5-trisphosphate binding sites: relation to Ca2+ release.
    Mouillac B; Devilliers G; Jard S; Guillon G
    Eur J Pharmacol; 1992 Mar; 225(3):179-93. PubMed ID: 1516654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calmodulin-stimulated Ca(2+)-ATPases in the vacuolar and plasma membranes in cauliflower.
    Askerlund P
    Plant Physiol; 1997 Jul; 114(3):999-1007. PubMed ID: 9232880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation of Vacuolar H+-Pyrophosphatase and H+-ATPase during Reformation of the Central Vacuole in Germinating Pumpkin Seeds.
    Maeshima M; Hara-Nishimura I; Takeuchi Y; Nishimura M
    Plant Physiol; 1994 Sep; 106(1):61-69. PubMed ID: 12232303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical properties of vacuolar zinc transport systems of Saccharomyces cerevisiae.
    MacDiarmid CW; Milanick MA; Eide DJ
    J Biol Chem; 2002 Oct; 277(42):39187-94. PubMed ID: 12161436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic differences in the uptake of salicylic acid glucose conjugates by vacuolar membrane-enriched vesicles isolated from Arabidopsis thaliana.
    Vaca E; Behrens C; Theccanat T; Choe JY; Dean JV
    Physiol Plant; 2017 Nov; 161(3):322-338. PubMed ID: 28665551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytosolic Ca(2+) Signals Enhance the Vacuolar Ion Conductivity of Bulging Arabidopsis Root Hair Cells.
    Wang Y; Dindas J; Rienmüller F; Krebs M; Waadt R; Schumacher K; Wu WH; Hedrich R; Roelfsema MR
    Mol Plant; 2015 Nov; 8(11):1665-74. PubMed ID: 26232520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of cellular Ca2+ by yeast vacuoles.
    Dunn T; Gable K; Beeler T
    J Biol Chem; 1994 Mar; 269(10):7273-8. PubMed ID: 8125940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct sets of tethering complexes, SNARE complexes, and Rab GTPases mediate membrane fusion at the vacuole in Arabidopsis.
    Takemoto K; Ebine K; Askani JC; Krüger F; Gonzalez ZA; Ito E; Goh T; Schumacher K; Nakano A; Ueda T
    Proc Natl Acad Sci U S A; 2018 Mar; 115(10):E2457-E2466. PubMed ID: 29463724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast.
    Vida TA; Emr SD
    J Cell Biol; 1995 Mar; 128(5):779-92. PubMed ID: 7533169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2.
    Schulz A; Beyhl D; Marten I; Wormit A; Neuhaus E; Poschet G; Büttner M; Schneider S; Sauer N; Hedrich R
    Plant J; 2011 Oct; 68(1):129-36. PubMed ID: 21668536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the inositol trisphosphate-sensitive and insensitive calcium stores by selective inhibition of the endoplasmic reticulum-type calcium pump isoforms in isolated platelet membrane vesicles.
    Papp B; Pászty K; Kovács T; Sarkadi B; Gárdos G; Enouf J; Enyedi A
    Cell Calcium; 1993 Jul; 14(7):531-8. PubMed ID: 8402836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of inositol 1,4,5-trisphosphate receptors and calcium mobilization in a hepatic plasma membrane fraction.
    Guillemette G; Balla T; Baukal AJ; Catt KJ
    J Biol Chem; 1988 Apr; 263(10):4541-8. PubMed ID: 2832398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.