These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 16653068)

  • 41. Calcium Retrieval from Vacuolar Pools (Characterization of a Vacuolar Calcium Channel).
    Gelli A; Blumwald E
    Plant Physiol; 1993 Aug; 102(4):1139-1146. PubMed ID: 12231891
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Vacuolar Ca(2+) uptake.
    Pittman JK
    Cell Calcium; 2011 Aug; 50(2):139-46. PubMed ID: 21310481
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assembly and targeting of peripheral and integral membrane subunits of the yeast vacuolar H(+)-ATPase.
    Kane PM; Kuehn MC; Howald-Stevenson I; Stevens TH
    J Biol Chem; 1992 Jan; 267(1):447-54. PubMed ID: 1530931
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inositol 1,4,5-trisphosphate releases Ca2+ from vacuolar membrane vesicles of oat roots.
    Schumaker KS; Sze H
    J Biol Chem; 1987 Mar; 262(9):3944-6. PubMed ID: 2881929
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Abundant calcium homeostasis machinery in rat dental enamel cells. Up-regulation of calcium store proteins during enamel mineralization implicates the endoplasmic reticulum in calcium transcytosis.
    Hubbard MJ
    Eur J Biochem; 1996 Aug; 239(3):611-23. PubMed ID: 8774704
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Arabidopsis ECHIDNA protein is involved in seed coloration, protein trafficking to vacuoles, and vacuolar biogenesis.
    Ichino T; Maeda K; Hara-Nishimura I; Shimada T
    J Exp Bot; 2020 Jul; 71(14):3999-4009. PubMed ID: 32201898
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vacuolar H+-ATPase subunit Vma1p functions as the molecular ligand in the vacuole-targeting fungicidal activity of polymyxin B.
    Iida M; Yamada K; Nango Y; Yamaguchi Y; Ogita A; Fujita KI; Tanaka T
    Microbiology (Reading); 2017 Apr; 163(4):531-540. PubMed ID: 28443813
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Calcium-Activated K+ Channels and Calcium-Induced Calcium Release by Slow Vacuolar Ion Channels in Guard Cell Vacuoles Implicated in the Control of Stomatal Closure.
    Ward JM; Schroeder JI
    Plant Cell; 1994 May; 6(5):669-683. PubMed ID: 12244253
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel Golgi to vacuole delivery pathway in yeast: identification of a sorting determinant and required transport component.
    Cowles CR; Snyder WB; Burd CG; Emr SD
    EMBO J; 1997 May; 16(10):2769-82. PubMed ID: 9184222
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Targeting of tonoplast proteins to the vacuole.
    Rojas-Pierce M
    Plant Sci; 2013 Oct; 211():132-6. PubMed ID: 23987818
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis.
    Gary JD; Wurmser AE; Bonangelino CJ; Weisman LS; Emr SD
    J Cell Biol; 1998 Oct; 143(1):65-79. PubMed ID: 9763421
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phosphoinositide signaling and turnover: PtdIns(3)P, a regulator of membrane traffic, is transported to the vacuole and degraded by a process that requires lumenal vacuolar hydrolase activities.
    Wurmser AE; Emr SD
    EMBO J; 1998 Sep; 17(17):4930-42. PubMed ID: 9724630
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biogenesis of vacuolar membrane glycoproteins of yeast Saccharomyces cerevisiae.
    Nishikawa S; Umemoto N; Ohsumi Y; Nakano A; Anraku Y
    J Biol Chem; 1990 May; 265(13):7440-8. PubMed ID: 2110166
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparative localization of inositol 1,4,5-trisphosphate and ryanodine receptors in intestinal smooth muscle: an analytical subfractionation study.
    Wibo M; Godfraind T
    Biochem J; 1994 Jan; 297 ( Pt 2)(Pt 2):415-23. PubMed ID: 8297349
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Vacuolar calcium channels.
    Pottosin II; Schönknecht G
    J Exp Bot; 2007; 58(7):1559-69. PubMed ID: 17355948
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting.
    Banta LM; Robinson JS; Klionsky DJ; Emr SD
    J Cell Biol; 1988 Oct; 107(4):1369-83. PubMed ID: 3049619
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evidence for vacuolar-type proton pumps in nonmitochondrial and inositol 1,4,5-trisphosphate-sensitive calcium stores of insulin-secreting cells.
    Bode H; Himmen A; Göke B
    Pflugers Arch; 1996 May; 432(1):97-104. PubMed ID: 8662273
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultracytochemical localization of the vacuolar marker enzymes alkaline phosphatase, adenosine triphosphatase, carboxypeptidase Y and aminopeptidase reveal new concept of vacuole biogenesis in Saccharomyces cerevisiae.
    Vorísek J
    Histochemistry; 1989; 92(5):421-32. PubMed ID: 2531129
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture.
    Jaquinod M; Villiers F; Kieffer-Jaquinod S; Hugouvieux V; Bruley C; Garin J; Bourguignon J
    Mol Cell Proteomics; 2007 Mar; 6(3):394-412. PubMed ID: 17151019
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis and application of photoaffinity analogues of inositol 1,4,5-trisphosphate selectively substituted at the 1-phosphate group.
    Schäfer R; Nehls-Sahabandu M; Grabowsky B; Dehlinger-Kremer M; Schulz I; Mayr GW
    Biochem J; 1990 Dec; 272(3):817-25. PubMed ID: 2176480
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.