BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 16653082)

  • 1. Plastid DNA in developing maize endosperm : genome structure, methylation, and transcript accumulation patterns.
    McCullough AJ; Kangasjarvi J; Gengenbach BG; Jones RJ
    Plant Physiol; 1992 Oct; 100(2):958-64. PubMed ID: 16653082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pattern of amyloplast DNA accumulation during wheat endosperm development.
    Catley MA; Bowman CM; Bayliss MW; Gale MD
    Planta; 1987 Jul; 171(3):416-21. PubMed ID: 24227442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ADP-glucose drives starch synthesis in isolated maize endosperm amyloplasts: characterization of starch synthesis and transport properties across the amyloplast envelope.
    Möhlmann T; Tjaden J; Henrichs G; Quick WP; Häusler R; Neuhaus HE
    Biochem J; 1997 Jun; 324 ( Pt 2)(Pt 2):503-9. PubMed ID: 9182710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Septum formation in amyloplasts produces compound granules in the rice endosperm and is regulated by plastid division proteins.
    Yun MS; Kawagoe Y
    Plant Cell Physiol; 2010 Sep; 51(9):1469-79. PubMed ID: 20685968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloroplast-localized 6-phosphogluconate dehydrogenase is critical for maize endosperm starch accumulation.
    Spielbauer G; Li L; Römisch-Margl L; Do PT; Fouquet R; Fernie AR; Eisenreich W; Gierl A; Settles AM
    J Exp Bot; 2013 May; 64(8):2231-42. PubMed ID: 23530131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amyloplast division progresses simultaneously at multiple sites in the endosperm of rice.
    Yun MS; Kawagoe Y
    Plant Cell Physiol; 2009 Sep; 50(9):1617-26. PubMed ID: 19622530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Spatiotemporal Deposition of Lysophosphatidylcholine Within Starch Granules of Maize Endosperm and its Relationships to the Expression of Genes Involved in Endoplasmic Reticulum-Amyloplast Lipid Trafficking and Galactolipid Synthesis.
    Gayral M; Fanuel M; Rogniaux H; Dalgalarrondo M; Elmorjani K; Bakan B; Marion D
    Plant Cell Physiol; 2019 Jan; 60(1):139-151. PubMed ID: 30295886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polypeptides of the maize amyloplast stroma. Stromal localization of starch-biosynthetic enzymes and identification of an 81-kilodalton amyloplast stromal heat-shock cognate.
    Yu Y; Mu HH; Mu-Forster C; Wasserman BP
    Plant Physiol; 1998 Apr; 116(4):1451-60. PubMed ID: 9536063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA methylation and tissue-specific transcription of the storage protein genes of maize.
    Bianchi MW; Viotti A
    Plant Mol Biol; 1988 Mar; 11(2):203-14. PubMed ID: 24272262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fundamental differences in starch synthesis in the maize leaf, embryo, ovary and endosperm.
    Boehlein SK; Shaw JR; Boehlein TJ; Boehlein EC; Hannah LC
    Plant J; 2018 Nov; 96(3):595-606. PubMed ID: 30062763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide high-resolution mapping of DNA methylation identifies epigenetic variation across embryo and endosperm in Maize (Zea may).
    Wang P; Xia H; Zhang Y; Zhao S; Zhao C; Hou L; Li C; Li A; Ma C; Wang X
    BMC Genomics; 2015 Jan; 16(1):21. PubMed ID: 25612809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and characterization of a maize cDNA encoding phytoene desaturase, an enzyme of the carotenoid biosynthetic pathway.
    Li ZH; Matthews PD; Burr B; Wurtzel ET
    Plant Mol Biol; 1996 Jan; 30(2):269-79. PubMed ID: 8616251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of the accumulation of Zein mRNA during maize endosperm development.
    Marks MD; Lindell JS; Larkins BA
    J Biol Chem; 1985 Dec; 260(30):16445-50. PubMed ID: 2999156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme activities associated with maize kernel amyloplasts.
    Echeverria E; Boyer CD; Thomas PA; Liu KC; Shannon JC
    Plant Physiol; 1988 Mar; 86(3):786-92. PubMed ID: 16665989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-dependent plastid RNA splicing in maize: transcripts from four plastid genes are predominantly unspliced in leaf meristems and roots.
    Barkan A
    Plant Cell; 1989 Apr; 1(4):437-45. PubMed ID: 2562564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of gene expression in amyloplasts of potato tubers.
    Brosch M; Krause K; Falk J; Krupinska K
    Planta; 2007 Dec; 227(1):91-9. PubMed ID: 17710432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ZEMa, a member of a novel group of MADS box genes, is alternatively spliced in maize endosperm.
    Montag K; Salamini F; Thompson RD
    Nucleic Acids Res; 1995 Jun; 23(12):2168-77. PubMed ID: 7610044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brittle-1, an adenylate translocator, facilitates transfer of extraplastidial synthesized ADP--glucose into amyloplasts of maize endosperms.
    Shannon JC; Pien FM; Cao H; Liu KC
    Plant Physiol; 1998 Aug; 117(4):1235-52. PubMed ID: 9701580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of ADP-glucose transport across the cereal endosperm amyloplast envelope.
    Bowsher CG; Scrase-Field EF; Esposito S; Emes MJ; Tetlow IJ
    J Exp Bot; 2007; 58(6):1321-32. PubMed ID: 17301030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential transcription in vivo and in vitro of two adjacent maize chloroplast genes: The large subunit of ribulosebisphosphate carboxylase and the 2.2-kilobase gene.
    Jolly SO; McIntosh L; Link G; Bogorad L
    Proc Natl Acad Sci U S A; 1981 Nov; 78(11):6821-5. PubMed ID: 16593121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.