These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16653089)

  • 21. Crassulacean acid metabolism (CAM) in Kalanchoë: Changes in intercellular CO2 concentration during a normal CAM cycle and during cycles in continuous light or darkness.
    Kluge M; Böhlke C; Queiroz O
    Planta; 1981 May; 152(1):87-92. PubMed ID: 24302324
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of osmotic gradients on vacuolar malic Acid storage: a basic principle in oscillatory behavior of crassulacean Acid metabolism.
    Lüttge U; Kluge M; Ball E
    Plant Physiol; 1975 Nov; 56(5):613-6. PubMed ID: 16659355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The 'mother of thousands' (Kalanchoë daigremontiana): a plant model for asexual reproduction and CAM studies.
    Garcês H; Sinha N
    Cold Spring Harb Protoc; 2009 Oct; 2009(10):pdb.emo133. PubMed ID: 20147034
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of light quantity and quality on the decarboxylation of malic Acid in crassulacean Acid metabolism photosynthesis.
    Barrow SR; Cockburn W
    Plant Physiol; 1982 Mar; 69(3):568-71. PubMed ID: 16662250
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Day-night changes of energy-rich compounds in crassulacean acid metabolism (CAM) species utilizing hexose and starch.
    Chen LS; Nose A
    Ann Bot; 2004 Sep; 94(3):449-55. PubMed ID: 15277250
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Malate Metabolism in the Dark After CO(2) Fixation in the Crassulacean Plant Kalanchoë tubiflora.
    Kalt W; Osmond CB; Siedow JN
    Plant Physiol; 1990 Oct; 94(2):826-32. PubMed ID: 16667784
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Light Scattering as an Indicator of the Energy State in Leaves of the Crassulacean Acid Metabolism Plant Kalanchoë pinnata.
    Köster S; Winter K
    Plant Physiol; 1985 Oct; 79(2):520-4. PubMed ID: 16664443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Varying CO(2) Partial Pressure on Photosynthesis and on Carbon Isotope Composition of Carbon-4 of Malate from the Crassulacean Acid Metabolism Plant Kalanchoë daigremontiana Hamet et Perr.
    Holtum JA; O'leary MH; Osmond CB
    Plant Physiol; 1983 Mar; 71(3):602-9. PubMed ID: 16662874
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Light-Stimulated Burst of Carbon Dioxide Uptake following Nocturnal Acidification in the Crassulacean Acid Metabolism Plant Kalanchoë diagremontiana.
    Winter K; Tenhunen JD
    Plant Physiol; 1982 Dec; 70(6):1718-22. PubMed ID: 16662751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proton and anion transport at the tonoplast in crassulacean-acid-metabolism plants: specificity of the malate-influx system in Kalanchoë daigremontiana.
    White PJ; Smith JA
    Planta; 1989 Sep; 179(2):265-74. PubMed ID: 24201527
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cyanide-resistant respiration in light- and dark-grown soybean cotyledons.
    Sesay A; Stewart CR; Shibles R
    Plant Physiol; 1988 Jul; 87(3):655-9. PubMed ID: 16666202
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A system dynamics model integrating physiology and biochemical regulation predicts extent of crassulacean acid metabolism (CAM) phases.
    Owen NA; Griffiths H
    New Phytol; 2013 Dec; 200(4):1116-31. PubMed ID: 23992169
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lateral diffusion of CO2 in leaves of the crassulacean acid metabolism plant Kalanchoe daigremontiana Hamet et Perrier.
    Duarte HM; Jakovljevic I; Kaiser F; Lüttge U
    Planta; 2005 Apr; 220(6):809-16. PubMed ID: 15843962
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Relation between Photosynthesis, Respiration, and Crassulacean Acid Metabolism in Leaf Slices of Aloe arborescens Mill.
    Denius HR; Homann PH
    Plant Physiol; 1972 Jun; 49(6):873-80. PubMed ID: 16658075
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diurnal Changes in Metabolite Levels and Crassulacean Acid Metabolism in Kalanchoë daigremontiana Leaves.
    Kenyon WH; Holaday AS; Black CC
    Plant Physiol; 1981 Nov; 68(5):1002-7. PubMed ID: 16662040
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature Dependence of Carbon Isotope Fractionation in CAM Plants.
    Deleens E; Treichel I; O'leary MH
    Plant Physiol; 1985 Sep; 79(1):202-6. PubMed ID: 16664371
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Regulation of Electron Partitioning between the Cytochrome and Alternative Pathways in Soybean Cotyledon and Root Mitochondria.
    Ribas-Carbo M; Lennon AM; Robinson SA; Giles L; Berry JA; Siedow JN
    Plant Physiol; 1997 Mar; 113(3):903-911. PubMed ID: 12223652
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Redundancy of stomatal control for the circadian photosynthetic rhythm in Kalanchoë daigremontiana Hamet et Perrier.
    Wyka TP; Duarte HM; Lüttge UE
    Plant Biol (Stuttg); 2005 Mar; 7(2):176-81. PubMed ID: 15822013
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gradient in the degree of Crassulacean acid metabolism within leaves of Kalanchoe daigremontiana.
    Winter K
    Planta; 1987 Sep; 172(1):88-90. PubMed ID: 24225791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of vacuolar malate-transport capacity in crassulacean acid metabolism and nitrate nutrition. Higher malate-transport capacity in ice plant after crassulacean acid metabolism-induction and in tobacco under nitrate nutrition.
    Lüttge U; Pfeifer T; Fischer-Schliebs E; Ratajczak R
    Plant Physiol; 2000 Nov; 124(3):1335-48. PubMed ID: 11080309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.