These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 16653139)

  • 21. Regulation of phosphoenolpyruvate carboxylase from Crassula by interconversion of oligomeric forms.
    Wu MX; Wedding RT
    Arch Biochem Biophys; 1985 Aug; 240(2):655-62. PubMed ID: 4026299
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of Crassula argentea phosphoenolpyruvate carboxylase in relation to temperature.
    Chardot TP; Wedding RT
    Arch Biochem Biophys; 1992 Mar; 293(2):292-7. PubMed ID: 1536564
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphoenolpyruvate carboxylase: three-dimensional structure and molecular mechanisms.
    Kai Y; Matsumura H; Izui K
    Arch Biochem Biophys; 2003 Jun; 414(2):170-9. PubMed ID: 12781768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cloning, expression, and characterization of a root-form phosphoenolpyruvate carboxylase from Zea mays: comparison with the C4-form enzyme.
    Dong LY; Masuda T; Kawamura T; Hata S; Izui K
    Plant Cell Physiol; 1998 Aug; 39(8):865-73. PubMed ID: 9787461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Studies of the allosteric properties of maize leaf phosphoenolpyruvate carboxylase with the phosphoenolpyruvate analog phosphomycin as activator.
    Mújica-Jiménez C; Castellanos-Martínez A; Muñoz-Clares RA
    Biochim Biophys Acta; 1998 Jul; 1386(1):132-44. PubMed ID: 9675261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of Phosphoenolpyruvate Carboxylase from Crassula argentea: Further Evidence on the Dimer-Tetramer Interconversion.
    Wu MX; Wedding RT
    Plant Physiol; 1987 Aug; 84(4):1080-3. PubMed ID: 16665565
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Desensitization to glucose 6-phosphate of phosphoenolpyruvate carboxylase from maize leaves by pyridoxal 5'-phosphate.
    Tovar-Méndez A; Mújica-Jiménez C; Muñoz-Clares RA
    Biochim Biophys Acta; 1997 Feb; 1337(2):207-16. PubMed ID: 9048897
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Limited proteolysis by trypsin influences activity of maize phosphoenolpyruvate carboxylase.
    Maralihalli G; Bhagwat AS
    Indian J Biochem Biophys; 2001 Dec; 38(6):361-7. PubMed ID: 11989665
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of pH on inactivation of maize phosphoenolpyruvate carboxylase.
    Wedding RT; Black MK
    Arch Biochem Biophys; 1990 Nov; 282(2):284-9. PubMed ID: 2122805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural requirements for activation of the glycine coagonist site of N-methyl-D-aspartate receptors expressed in Xenopus oocytes.
    McBain CJ; Kleckner NW; Wyrick S; Dingledine R
    Mol Pharmacol; 1989 Oct; 36(4):556-65. PubMed ID: 2554111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A study of the in-vitro regulation of phosphoenolpyruvate carboxylase from the epidermis of Commelina communis by malate and glucose-6-phosphate.
    Donkin ME; Taffs J; Martin ES
    Planta; 1982 Sep; 155(5):416-22. PubMed ID: 24271973
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation and sequence of an active-site peptide from maize leaf phosphoenolpyruvate carboxylase inactivated by pyridoxal 5'-phosphate.
    Jiao JA; Podestá FE; Chollet R; O'Leary MH; Andreo CS
    Biochim Biophys Acta; 1990 Dec; 1041(3):291-5. PubMed ID: 2268676
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purification and characterization of phosphoenolpyruvate carboxylase from maize leaves.
    Uedan K; Sugiyama T
    Plant Physiol; 1976 Jun; 57(6):906-10. PubMed ID: 16659596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Maize leaf phosphoenolpyruvate carboxylase : oligomeric state and activity in the presence of glycerol.
    Podestá FE; Andreo CS
    Plant Physiol; 1989 Jun; 90(2):427-33. PubMed ID: 16666788
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolite regulation of partially purified soybean nodule phosphoenolpyruvate carboxylase.
    Schuller KA; Turpin DH; Plaxton WC
    Plant Physiol; 1990 Nov; 94(3):1429-35. PubMed ID: 16667849
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolution of C4 phosphoenolpyruvate carboxylase in Flaveria, a conserved serine residue in the carboxyl-terminal part of the enzyme is a major determinant for C4-specific characteristics.
    Bläsing OE; Westhoff P; Svensson P
    J Biol Chem; 2000 Sep; 275(36):27917-23. PubMed ID: 10871630
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of Magnesium in the Binding of Substrate and Effectors to Phosphoenolpyruvate Carboxylase from a CAM Plant.
    Wedding RT; Black MK
    Plant Physiol; 1988 Jun; 87(2):443-6. PubMed ID: 16666161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulatory phosphorylation of serine-15 in maize phosphoenolpyruvate carboxylase by a C4-leaf protein-serine kinase.
    Jiao JA; Chollet R
    Arch Biochem Biophys; 1990 Dec; 283(2):300-5. PubMed ID: 2148863
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic interactions of glycine with substrates and effectors of phosphenolpyruvate carboxylase from maize leaves.
    Gillinta J; Grover SD
    Photosynth Res; 1995 Aug; 45(2):121-6. PubMed ID: 24301478
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maize phosphoenolpyruvate carboxylase. Mutations at the putative binding site for glucose 6-phosphate caused desensitization and abolished responsiveness to regulatory phosphorylation.
    Takahashi-Terada A; Kotera M; Ohshima K; Furumoto T; Matsumura H; Kai Y; Izui K
    J Biol Chem; 2005 Mar; 280(12):11798-806. PubMed ID: 15665330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.