These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 16653142)

  • 1. Turnover of soluble proteins in the wheat sieve tube.
    Fisher DB; Wu Y; Ku MS
    Plant Physiol; 1992 Nov; 100(3):1433-41. PubMed ID: 16653142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sieve tube unloading and post-phloem transport of fluorescent tracers and proteins injected into sieve tubes via severed aphid stylets.
    Fisher DB; Cash-Clark CE
    Plant Physiol; 2000 May; 123(1):125-38. PubMed ID: 10806231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation and Conversion of Sugars by Developing Wheat Grains : VI. Gradients Along the Transport Pathway from the Peduncle to the Endosperm Cavity during Grain Filling.
    Fisher DB; Gifford RM
    Plant Physiol; 1986 Dec; 82(4):1024-30. PubMed ID: 16665129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution and frequency of plasmodesmata in relation to photoassimilate pathways and phloem loading in the barley leaf.
    Evert RF; Russin WA; Botha CE
    Planta; 1996 Apr; 198(4):572-579. PubMed ID: 28321668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and localisation analysis of the wheat sucrose transporter TaSUT1 in vegetative tissues.
    Aoki N; Scofield GN; Wang XD; Patrick JW; Offler CE; Furbank RT
    Planta; 2004 May; 219(1):176-84. PubMed ID: 15014993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phloem loading--not metaphysical, only complex: towards a unified model of phloem loading.
    Komor E; Orlich G; Weig A; Köckenberger W
    J Exp Bot; 1996 Aug; 47 Spec No():1155-64. PubMed ID: 21245244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential distribution of proteins expressed in companion cells in the sieve element-companion cell complex of rice plants.
    Fukuda A; Fujimaki S; Mori T; Suzui N; Ishiyama K; Hayakawa T; Yamaya T; Fujiwara T; Yoneyama T; Hayashi H
    Plant Cell Physiol; 2005 Nov; 46(11):1779-86. PubMed ID: 16120685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation of the Münch hypothesis for phloem transport in soybean.
    Fisher DB
    Planta; 1978 Jan; 139(1):25-8. PubMed ID: 24414101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rice phloem thioredoxin h has the capacity to mediate its own cell-to-cell transport through plasmodesmata.
    Ishiwatari Y; Fujiwara T; McFarland KC; Nemoto K; Hayashi H; Chino M; Lucas WJ
    Planta; 1998 May; 205(1):12-22. PubMed ID: 9599802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. (Questions)n on phloem biology. 2. Mass flow, molecular hopping, distribution patterns and macromolecular signalling.
    van Bel AJ; Furch AC; Hafke JB; Knoblauch M; Patrick JW
    Plant Sci; 2011 Oct; 181(4):325-30. PubMed ID: 21889037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular sabotage of plant defense by aphid saliva.
    Will T; Tjallingii WF; Thönnessen A; van Bel AJ
    Proc Natl Acad Sci U S A; 2007 Jun; 104(25):10536-41. PubMed ID: 17553961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solute distribution in sugar beet leaves in relation to Phloem loading and translocation.
    Geiger DR; Giaquinta RT; Sovonick SA; Fellows RJ
    Plant Physiol; 1973 Dec; 52(6):585-9. PubMed ID: 16658610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic battle for photosynthate acquisition between sieve tubes and adjoining parenchyma in transport phloem.
    Hafke JB; van Amerongen JK; Kelling F; Furch AC; Gaupels F; van Bel AJ
    Plant Physiol; 2005 Jul; 138(3):1527-37. PubMed ID: 15980202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aphid (Sitobion yakini) investigation suggests thin-walled sieve tubes in barley (Hordeum vulgare) to be more functional than thick-walled sieve tubes.
    Matsiliza B; Botha CE
    Physiol Plant; 2002 May; 115(1):137-143. PubMed ID: 12010477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues.
    Imlau A; Truernit E; Sauer N
    Plant Cell; 1999 Mar; 11(3):309-22. PubMed ID: 10072393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-sieve element transport of photoassimilates in sink regions.
    Patrick JW; Offler CE
    J Exp Bot; 1996 Aug; 47 Spec No():1165-77. PubMed ID: 21245245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phloem sap proteins from Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata.
    Balachandran S; Xiang Y; Schobert C; Thompson GA; Lucas WJ
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):14150-5. PubMed ID: 9391168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relation of beet yellows virus to the phloem and to movement in the sieve tube.
    Esau K; Cronshaw J; Hoefert LL
    J Cell Biol; 1967 Jan; 32(1):71-87. PubMed ID: 10976202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf structure in relation to solute transport and phloem loading in Zea mays L.
    Evert RF; Eschrich W; Heyser W
    Planta; 1978 Jan; 138(3):279-94. PubMed ID: 24414058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of Osmotic Gradients in Soybean Sieve Tubes by Quantitative Autoradiography: Qualified Support for the MUnch Hypothesis.
    Housley TL; Fisher DB
    Plant Physiol; 1977 Apr; 59(4):701-6. PubMed ID: 16659921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.