BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 16653156)

  • 1. Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions.
    Hertwig B; Streb P; Feierabend J
    Plant Physiol; 1992 Nov; 100(3):1547-53. PubMed ID: 16653156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoinactivation of Catalase Occurs under Both High- and Low-Temperature Stress Conditions and Accompanies Photoinhibition of Photosystem II.
    Feierabend J; Schaan C; Hertwig B
    Plant Physiol; 1992 Nov; 100(3):1554-61. PubMed ID: 16653157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased capacity for synthesis of the D1 protein and of catalase at low temperature in leaves of cold-hardened winter rye (Secale cereale L.).
    Shang W; Schmidt M; Feierabend J
    Planta; 2003 Mar; 216(5):865-73. PubMed ID: 12624774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preferential photoinactivation of catalase and photoinhibition of photosystem II are common early symptoms under various osmotic and chemical stress conditions.
    Streb P; Michael-Knauf A; Feierabend J
    Physiol Plant; 1993 Aug; 88(4):590-598. PubMed ID: 28741781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mode of translational activation of the catalase (cat1) mRNA of rye leaves (Secale cereale L.) and its control through blue light and reactive oxygen.
    Schmidt M; Grief J; Feierabend J
    Planta; 2006 Mar; 223(4):835-46. PubMed ID: 16341707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in gene expression during dehardening of cold-hardened winter rye (Secale cereale L.) leaves and potential role of a peptide methionine sulfoxide reductase in cold-acclimation.
    In O; Berberich T; Romdhane S; Feierabend J
    Planta; 2005 Apr; 220(6):941-50. PubMed ID: 15843963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-transcriptional mechanisms control catalase synthesis during its light-induced turnover in rye leaves through the availability of the hemin cofactor and reversible changes of the translation efficiency of mRNA.
    Schmidt M; Dehne S; Feierabend J
    Plant J; 2002 Sep; 31(5):601-13. PubMed ID: 12207650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A bacterial transgene for catalase protects translation of d1 protein during exposure of salt-stressed tobacco leaves to strong light.
    Al-Taweel K; Iwaki T; Yabuta Y; Shigeoka S; Murata N; Wadano A
    Plant Physiol; 2007 Sep; 145(1):258-65. PubMed ID: 17660354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple coordinate controls contribute to a balanced expression of ribulose-1,5-bisphosphate carboxylase/oxygenase subunits in rye leaves.
    Winter U; Feierabend J
    Eur J Biochem; 1990 Jan; 187(2):445-53. PubMed ID: 2298218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the expression of a plastidic chaperonin 60 in different plant tissues and under photosynthetic and non-photosynthetic conditions.
    Schmitz G; Schmidt M; Feierabend J
    Planta; 1996; 200(3):326-36. PubMed ID: 8983418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of activated oxygen in detached wheat and rye leaves and its relevance to the initiation of senescence.
    Kar M; Feierabend J
    Planta; 1984 Apr; 160(5):385-91. PubMed ID: 24258664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nuclear-encoded PsbW protein subunit of photosystem II undergoes light-induced proteolysis.
    Hagman A; Shi LX; Rintamäki E; Andersson B; Schröder WP
    Biochemistry; 1997 Oct; 36(42):12666-71. PubMed ID: 9335523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and degradation of unassembled polypeptides of the coupling factor of photophosphorylation CF1 in 70S ribosome-deficient rye leaves.
    Biekmann S; Feierabend J
    Eur J Biochem; 1985 Nov; 152(3):529-35. PubMed ID: 2865139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capacity for RNA synthesis in 70S ribosome-deficient plastids of heat-bleached rye leaves.
    Bünger W; Feierabend J
    Planta; 1980 Jul; 149(2):163-9. PubMed ID: 24306248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow degradation of the d1 protein is related to the susceptibility of low-light-grown pumpkin plants to photoinhibition.
    Tyystjärvi E; Ali-Yrkkö K; Kettunen R; Aro EM
    Plant Physiol; 1992 Nov; 100(3):1310-7. PubMed ID: 16653122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential D1 dephosphorylation in functional and photodamaged photosystem II centers. Dephosphorylation is a prerequisite for degradation of damaged D1.
    Rintamäki E; Kettunen R; Aro EM
    J Biol Chem; 1996 Jun; 271(25):14870-5. PubMed ID: 8663006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoinhibition and D1 Protein Degradation in Peas Acclimated to Different Growth Irradiances.
    Aro EM; McCaffery S; Anderson JM
    Plant Physiol; 1993 Nov; 103(3):835-843. PubMed ID: 12231982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional and translational adjustments of psbA gene expression in mature chloroplasts during photoinhibition and subsequent repair of photosystem II.
    Kettunen R; Pursiheimo S; Rintamäki E; Van Wijk KJ; Aro EM
    Eur J Biochem; 1997 Jul; 247(1):441-8. PubMed ID: 9249058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery from Photoinhibition in Peas (Pisum sativum L.) Acclimated to Varying Growth Irradiances (Role of D1 Protein Turnover).
    Aro EM; McCaffery S; Anderson JM
    Plant Physiol; 1994 Mar; 104(3):1033-1041. PubMed ID: 12232146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoinactivation of catalase in vitro and in leaves.
    Feierabend J; Engel S
    Arch Biochem Biophys; 1986 Dec; 251(2):567-76. PubMed ID: 3800386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.