These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 1665317)

  • 41. Actions of single sensory fibres on cat dorsal column nuclei neurones: vibratory signalling in a one-to-one linkage.
    Ferrington DG; Rowe MJ; Tarvin RP
    J Physiol; 1987 May; 386():293-309. PubMed ID: 3681711
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Distribution of dopamine-containing neurons and fibres in the feline medulla oblongata: a comparative study using catecholamine-synthesizing enzyme and dopamine immunohistochemistry.
    Maqbool A; Batten TF; Berry PA; McWilliam PN
    Neuroscience; 1993 Apr; 53(3):717-33. PubMed ID: 8098139
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The chemo- and somatotopic architecture of the Galago cuneate and gracile nuclei.
    Strata F; Coq JO; Kaas JH
    Neuroscience; 2003; 116(3):831-50. PubMed ID: 12573723
    [TBL] [Abstract][Full Text] [Related]  

  • 44. GABAergic boutons establish synaptic contacts with the soma and dendrites of cuneothalamic relay neurons in the rat cuneate nucleus.
    Lue JH; Shieh JY; Wen CY; Chen KN; Chan SA
    Exp Brain Res; 1994; 98(1):13-20. PubMed ID: 7516891
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of activity characteristics of the cuneate nucleus and thoracic spinal neurons receiving noxious cardiac and/or somatic inputs in rats.
    Qin C; Goodman MD; Little JM; Farber JP; Foreman RD
    Brain Res; 2010 Jul; 1346():102-11. PubMed ID: 20595052
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Direct evidence of an extensive GABAergic innervation of the spinal dorsal horn by fibres descending from the rostral ventromedial medulla.
    Antal M; Petkó M; Polgár E; Heizmann CW; Storm-Mathisen J
    Neuroscience; 1996 Jul; 73(2):509-18. PubMed ID: 8783266
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mapping of forelimb afferents to the cuneate nuclei of the rat.
    Beck CH
    Brain Res Bull; 1981 Jun; 6(6):503-16. PubMed ID: 7248814
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The efferent connections of the feline nucleus cuneatus.
    Hand PJ; Van Winkle T
    J Comp Neurol; 1977 Jan; 171(1):83-109. PubMed ID: 830673
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gracilo-Diencephalic relay cells: a quantitative study in the cat using retrograde transport of horseradish peroxidase.
    Blomqvist A
    J Comp Neurol; 1980 Oct; 193(4):1097-1125. PubMed ID: 7430439
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Studies on the cerebellar projections from the main and external cuneate nuclei in the cat by means of retrograde axonal transport of horseradish peroxidase.
    Rinvik E; Walberg F
    Brain Res; 1975 Sep; 95(2-3):371-81. PubMed ID: 50867
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Organization of primary afferent projections to the gracile nucleus of the dorsal column system of primates.
    Qi HX; Kaas JH
    J Comp Neurol; 2006 Nov; 499(2):183-217. PubMed ID: 16977626
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Representation of the body surface in the gracile, cuneate, and spinal trigeminal nuclei of the little red flying fox (Pteropus scapulatus).
    Martin RL
    J Comp Neurol; 1993 Sep; 335(3):334-42. PubMed ID: 8227523
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A quantitative study of the projections of the gracile, cuneate and trigeminal nuclei and of the medullary reticular formation to the thalamus in the rat.
    Kemplay S; Webster KE
    Neuroscience; 1989; 32(1):153-67. PubMed ID: 2586747
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Distribution of the postsynaptic dorsal column projection in the cuneate nucleus of monkeys.
    Cliffer KD; Willis WD
    J Comp Neurol; 1994 Jul; 345(1):84-93. PubMed ID: 8089278
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Distribution of glutamate decarboxylase-containing neurons in rabbit medulla oblongata with attention to intramedullary and spinal projections.
    Blessing WW
    Neuroscience; 1990; 37(1):171-85. PubMed ID: 2243591
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Signalling of static and dynamic features of muscle spindle input by external cuneate neurones in the cat.
    Mackie PD; Morley JW; Rowe MJ
    J Physiol; 1999 Sep; 519 Pt 2(Pt 2):559-69. PubMed ID: 10457071
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Patterns of primary afferent termination in the external cuneate nucleus from cervical axial muscles in the cat.
    Bakker DA; Richmond FJ; Abrahams VC; Courville J
    J Comp Neurol; 1985 Nov; 241(4):467-79. PubMed ID: 4078043
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The morphology and distribution of serotonin-like immunoreactive fibers in the cat dorsal column nuclei.
    Pearson JC; Goldfinger MD
    Neurosci Lett; 1987 Feb; 74(2):125-31. PubMed ID: 3554006
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reduced retrograde labeling of diencephalic-projecting neurons in the gracile nucleus of the monkey following removal of dorsal column input.
    Berkley KJ; Vierck CJ
    Exp Neurol; 1993 Sep; 123(1):64-73. PubMed ID: 8405279
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neuronal responses of medullary relay cells to controlled stretches of forearm muscles in the monkey.
    Hummelsheim H; Wiesendanger M
    Neuroscience; 1985 Dec; 16(4):989-96. PubMed ID: 4094699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.