These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 16653483)

  • 1. RECOVERY PROCESSES OF PONDEROSA PINE REPRODUCTION FOLLOWING INJURY TO YOUNG ANNUAL GROWTH.
    Cooperrider CK
    Plant Physiol; 1938 Jan; 13(1):5-27. PubMed ID: 16653483
    [No Abstract]   [Full Text] [Related]  

  • 2. To live fast or not: growth, vigor and longevity of old-growth ponderosa pine and lodgepole pine trees.
    Kaufmann MR
    Tree Physiol; 1996; 16(1_2):139-144. PubMed ID: 14871757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mountain Pine Beetle Dynamics and Reproductive Success in Post-Fire Lodgepole and Ponderosa Pine Forests in Northeastern Utah.
    Lerch AP; Pfammatter JA; Bentz BJ; Raffa KF
    PLoS One; 2016; 11(10):e0164738. PubMed ID: 27783632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution.
    Domec JC; Warren JM; Meinzer FC; Brooks JR; Coulombe R
    Oecologia; 2004 Sep; 141(1):7-16. PubMed ID: 15338263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stronger influence of growth rate than severity of drought stress on mortality of large ponderosa pines during the 2012-2015 California drought.
    Keen RM; Voelker SL; Bentz BJ; Wang SS; Ferrell R
    Oecologia; 2020 Nov; 194(3):359-370. PubMed ID: 33030569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon dioxide and water vapor exchange by young and old ponderosa pine ecosystems during a dry summer.
    Law BE; Goldstein AH; Anthoni PM; Unsworth MH; Panek JA; Bauer MR; Fracheboud JM; Hultman N
    Tree Physiol; 2001 Mar; 21(5):299-308. PubMed ID: 11262921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blue wild-rye grass competition increases the effect of ozone on ponderosa pine seedlings.
    Andersen CP; Hogsett WE; Plocher M; Rodecap K; Lee EH
    Tree Physiol; 2001 Mar; 21(5):319-27. PubMed ID: 11262923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological responses of ponderosa pine in western Montana to thinning, prescribed fire and burning season.
    Sala A; Peters GD; McIntyre LR; Harrington MG
    Tree Physiol; 2005 Mar; 25(3):339-48. PubMed ID: 15631982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fortifying the forest: thinning and burning increase resistance to a bark beetle outbreak and promote forest resilience.
    Hood SM; Baker S; Sala A
    Ecol Appl; 2016 Oct; 26(7):1984-2000. PubMed ID: 27755724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term benefits to the growth of ponderosa pines from controlling southwestern pine tip moth (Lepidoptera: Tortricidae) and weeds.
    Wagner MR; Chen Z
    J Econ Entomol; 2004 Dec; 97(6):1972-7. PubMed ID: 15666752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonal changes in root and soil respiration of ozone-exposed ponderosa pine (Pinus ponderosa) grown in different substrates.
    Scagel CF; Andersen CP
    New Phytol; 1997 Aug; 136(4):627-643. PubMed ID: 33863111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suitability of live and fire-killed small-diameter ponderosa and lodgepole pine trees for manufacturing a new structural wood composite.
    Linton JM; Barnes HM; Seale RD; Jones PD; Lowell EC; Hummel SS
    Bioresour Technol; 2010 Aug; 101(15):6242-7. PubMed ID: 20378344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mountain Pine Beetle Host Selection Between Lodgepole and Ponderosa Pines in the Southern Rocky Mountains.
    West DR; Briggs JS; Jacobi WR; Negrón JF
    Environ Entomol; 2016 Feb; 45(1):127-41. PubMed ID: 26546596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in leaf gas exchange and water relations among species and tree sizes in an Arizona pine-oak forest.
    Kolb TE; Stone JE
    Tree Physiol; 2000 Jan; 20(1):1-12. PubMed ID: 12651521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drought responses of conifers in ecotone forests of northern Arizona: tree ring growth and leaf delta13C.
    Adams HD; Kolb TE
    Oecologia; 2004 Jul; 140(2):217-25. PubMed ID: 15148600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ponderosa pine resin defenses and growth: metrics matter.
    Hood S; Sala A
    Tree Physiol; 2015 Nov; 35(11):1223-35. PubMed ID: 26433021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ectomycorrhizal communities of ponderosa pine and lodgepole pine in the south-central Oregon pumice zone.
    Garcia MO; Smith JE; Luoma DL; Jones MD
    Mycorrhiza; 2016 May; 26(4):275-86. PubMed ID: 26547440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid Induction of Multiple Terpenoid Groups by Ponderosa Pine in Response to Bark Beetle-Associated Fungi.
    Keefover-Ring K; Trowbridge A; Mason CJ; Raffa KF
    J Chem Ecol; 2016 Jan; 42(1):1-12. PubMed ID: 26662358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ponderosa pine needle-induced parturition in cattle.
    Panter KE; James LF; Molyneux RJ
    J Anim Sci; 1992 May; 70(5):1604-8. PubMed ID: 1526928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dry deposition of nitrogen and sulfur to Ponderosa and Jeffrey pine in the San Bernardino national forest in Southern California.
    Fenn ME; Bytnerowicz A
    Environ Pollut; 1993; 81(3):277-85. PubMed ID: 15091813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.