These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 1665352)

  • 21. Effect of Fe(III)-ligand properties on effectiveness of modified photo-Fenton processes.
    Aplin R; Feitz AJ; Waite TD
    Water Sci Technol; 2001; 44(5):23-30. PubMed ID: 11695464
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydroxyl radical induced oxidation of theophylline in water: a kinetic and mechanistic study.
    Sunil Paul MM; Aravind UK; Pramod G; Saha A; Aravindakumar CT
    Org Biomol Chem; 2014 Aug; 12(30):5611-20. PubMed ID: 24957195
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of caffeic acid and its related catechols on hydroxyl radical formation by 3-hydroxyanthranilic acid, ferric chloride, and hydrogen peroxide.
    Iwahashi H; Ishii T; Sugata R; Kido R
    Arch Biochem Biophys; 1990 Jan; 276(1):242-7. PubMed ID: 2153363
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hemoglobin. A biologic fenton reagent.
    Sadrzadeh SM; Graf E; Panter SS; Hallaway PE; Eaton JW
    J Biol Chem; 1984 Dec; 259(23):14354-6. PubMed ID: 6094553
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of pyrophosphate, tripolyphosphate and ATP on the rate of the Fenton reaction.
    Rachmilovich-Calis S; Masarwa A; Meyerstein N; Meyerstein D
    J Inorg Biochem; 2011 May; 105(5):669-74. PubMed ID: 21450270
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prooxidant action of desferrioxamine: Fenton-like production of hydroxyl radicals by reduced ferrioxamine.
    Borg DC; Schaich KM
    J Free Radic Biol Med; 1986; 2(4):237-43. PubMed ID: 3034996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fenton-like degradation of MTBE: Effects of iron counter anion and radical scavengers.
    Hwang S; Huling SG; Ko S
    Chemosphere; 2010 Jan; 78(5):563-8. PubMed ID: 19959205
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrogen peroxide kills Staphylococcus aureus by reacting with staphylococcal iron to form hydroxyl radical.
    Repine JE; Fox RB; Berger EM
    J Biol Chem; 1981 Jul; 256(14):7094-6. PubMed ID: 6265438
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Superoxide dismutase and Fenton chemistry. Reaction of ferric-EDTA complex and ferric-bipyridyl complex with hydrogen peroxide without the apparent formation of iron(II).
    Gutteridge JM; Maidt L; Poyer L
    Biochem J; 1990 Jul; 269(1):169-74. PubMed ID: 2165392
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of chelation on the Fenton-based electrochemical degradation of herbicide tebuthiuron.
    Gozzi F; Sirés I; de Oliveira SC; Machulek A; Brillas E
    Chemosphere; 2018 May; 199():709-717. PubMed ID: 29471241
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intra- and intermolecular oxidation of oxymyoglobin and oxyhemoglobin induced by hydroxyl and carbonate radicals.
    Goldstein S; Samuni A
    Free Radic Biol Med; 2005 Aug; 39(4):511-9. PubMed ID: 16043022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fenton Reaction in vivo and in vitro. Possibilities and Limitations.
    Muranov KO
    Biochemistry (Mosc); 2024 Jan; 89(Suppl 1):S112-S126. PubMed ID: 38621747
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production of formaldehyde and acetone by hydroxyl-radical generating systems during the metabolism of tertiary butyl alcohol.
    Cederbaum AI; Qureshi A; Cohen G
    Biochem Pharmacol; 1983 Dec; 32(23):3517-24. PubMed ID: 6316986
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro.
    Imlay JA; Chin SM; Linn S
    Science; 1988 Apr; 240(4852):640-2. PubMed ID: 2834821
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydroxyl radicals do not crosslink a DNA-lysozyme complex.
    Werbin H; Cheng CJ
    Carcinogenesis; 1985 Dec; 6(12):1689-91. PubMed ID: 2998638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase.
    Winston GW; Feierman DE; Cederbaum AI
    Arch Biochem Biophys; 1984 Jul; 232(1):378-90. PubMed ID: 6331321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reaction of the carbonate radical with the spin-trap 5,5-dimethyl-1-pyrroline-N-oxide in chemical and cellular systems: pulse radiolysis, electron paramagnetic resonance, and kinetic-competition studies.
    Alvarez MN; Peluffo G; Folkes L; Wardman P; Radi R
    Free Radic Biol Med; 2007 Dec; 43(11):1523-33. PubMed ID: 17964423
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxidation of dimethylsulphoxide to formaldehyde by oxyhaemoglobin and oxyleghaemoglobin in the presence of hydrogen peroxide is not mediated by "free" hydroxyl radicals.
    Puppo A; Halliwell B
    Free Radic Res Commun; 1989; 5(4-5):277-81. PubMed ID: 2540074
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complex-formation and reduction of ferric iron by 2-oxo-4-thiomethylbutyric acid, and the production of hydroxyl radicals.
    Winston GW; Eibschutz OM; Strekas T; Cederbaum AI
    Biochem J; 1986 Apr; 235(2):521-9. PubMed ID: 3741403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pulse radiolysis in study of oxygen radicals.
    Simic MG
    Methods Enzymol; 1990; 186():89-100. PubMed ID: 2172727
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.