These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 1665486)
21. Improvement of substrate recognition in branched-chain aminoacyl-tRNA synthetases from Escherichia coli under conditions of pyrophosphate amplification. Nakatsuka-Mori T; Sato D; Aoki H J Biosci Bioeng; 2022 May; 133(5):436-443. PubMed ID: 35216933 [TBL] [Abstract][Full Text] [Related]
22. Amino acid selectivity in the aminoacylation of coenzyme A and RNA minihelices by aminoacyl-tRNA synthetases. Jakubowski H J Biol Chem; 2000 Nov; 275(45):34845-8. PubMed ID: 10995737 [TBL] [Abstract][Full Text] [Related]
23. The activity and sedimentation properties of the aminoacyl-tRNA synthetases of rat skeletal muscle. Arbeeny CM; Briden KL; Stirewalt WS Biochim Biophys Acta; 1979 Sep; 564(2):191-201. PubMed ID: 486478 [TBL] [Abstract][Full Text] [Related]
24. Non-essential role of lysine residues for the catalytic activities of aspartyl-tRNA synthetase and comparison with other aminoacyl-tRNA synthetases. Théobald A; Kern D; Giegé R Biochimie; 1988 Feb; 70(2):205-13. PubMed ID: 3134944 [TBL] [Abstract][Full Text] [Related]
25. A complex from cultured Chinese hamster ovary cells containing nine aminoacyl-tRNA synthetases. Thermolabile leucyl-tRNA synthetase from the tsH1 mutant cell line is an integral component of this complex. Mirande M; Le Corre D; Waller JP Eur J Biochem; 1985 Mar; 147(2):281-9. PubMed ID: 3971983 [TBL] [Abstract][Full Text] [Related]
26. Functional significance of aminoacyl-tRNA synthetase complex in the aminoacylation of tRNA(Leu) isoacceptors. Lindqvist L; Mäenpää PH; Pösö AR Biochem Biophys Res Commun; 1989 Aug; 163(1):513-9. PubMed ID: 2775284 [TBL] [Abstract][Full Text] [Related]
27. Comparison of the complexed and free forms of rat liver arginyl-tRNA synthetase and origin of the free form. Vellekamp G; Sihag RK; Deutscher MP J Biol Chem; 1985 Aug; 260(17):9843-7. PubMed ID: 4019497 [TBL] [Abstract][Full Text] [Related]
28. Methionyl-tRNA synthetase from Escherichia coli: active stoichiometry and stopped-flow analysis of methionyl adenylate formaiton. Hyafil F; Jacques Y; Fayat G; Fromant M; Dessen P; Blanquet S Biochemistry; 1976 Aug; 15(17):3678-85. PubMed ID: 182214 [TBL] [Abstract][Full Text] [Related]
29. Lysine 335, part of the KMSKS signature sequence, plays a crucial role in the amino acid activation catalysed by the methionyl-tRNA synthetase from Escherichia coli. Mechulam Y; Dardel F; Le Corre D; Blanquet S; Fayat G J Mol Biol; 1991 Feb; 217(3):465-75. PubMed ID: 1847216 [TBL] [Abstract][Full Text] [Related]
30. The aminoacylation of transfer ribonucleic acid. Recognition of methionine by Escherichia coli methionyl-transfer ribonucleic acid synthetase. Old JM; Jones DS Biochem J; 1977 Aug; 165(2):367-73. PubMed ID: 336037 [TBL] [Abstract][Full Text] [Related]
31. Subcellular distribution of aminoacyl-tRNA synthetases in various eukaryotic cells. Ussery MA; Tanaka WK; Hardesty B Eur J Biochem; 1977 Feb; 72(3):491-500. PubMed ID: 837925 [TBL] [Abstract][Full Text] [Related]
32. Role of the beta-phosphate-gamma-phosphate interchange reaction of adenosine triphosphate in amino acid discrimination by valyl- and methionyl-tRNA synthetases from Escherichia coli. Smith LT; Cohn M Biochemistry; 1981 Jan; 20(2):385-91. PubMed ID: 6258639 [No Abstract] [Full Text] [Related]
34. Occurrence of aminoacyl-tRNA synthetase complexes in quiescent wheat germ. Quintard B; Mouricout M; Carias JR; Julien R Biochem Biophys Res Commun; 1978 Dec; 85(3):999-1006. PubMed ID: 736971 [No Abstract] [Full Text] [Related]
35. Zinc stimulation of bone protein synthesis in tissue culture. Activation of aminoacyl-tRNA synthetase. Yamaguchi M; Oishi H; Suketa Y Biochem Pharmacol; 1988 Nov; 37(21):4075-80. PubMed ID: 2461201 [TBL] [Abstract][Full Text] [Related]
36. Macromolecular complexes of aminoacyl-tRNA synthetases from eukaryotes. 1. Extensive purification and characterization of the high-molecular-weight complex(es) of seven aminoacyl-tRNA synthetases from sheep liver. Kellermann O; Brevet A; Tonetti H; Waller JP Eur J Biochem; 1979 Sep; 99(3):541-50. PubMed ID: 499214 [TBL] [Abstract][Full Text] [Related]
37. Methionyl-tRNA synthetase needs an intact and mobile 332KMSKS336 motif in catalysis of methionyl adenylate formation. Schmitt E; Meinnel T; Blanquet S; Mechulam Y J Mol Biol; 1994 Sep; 242(4):566-76. PubMed ID: 7932711 [TBL] [Abstract][Full Text] [Related]
38. Disassembly and gross structure of particulate aminoacyl-tRNA synthetases from rat liver. Isolation and the structural relationship of synthetase complexes. Van Dang C; Yang DC J Biol Chem; 1979 Jun; 254(12):5350-6. PubMed ID: 447654 [TBL] [Abstract][Full Text] [Related]
39. Purification and characterization of lysyl-tRNA synthetase after dissociation of the particulate aminoacyl-tRNA synthetases from rat liver. Johnson DL; Van Dang C; Yang DC J Biol Chem; 1980 May; 255(9):4362-6. PubMed ID: 7372681 [TBL] [Abstract][Full Text] [Related]
40. Sedimentation behaviour of aminoacyl-tRNA synthetases from mixed lysates of yeast and rabbit liver. Mirande M; Pailliez JP; Schwencke J; Waller JP Biochim Biophys Acta; 1983 Sep; 747(1-2):71-7. PubMed ID: 6349695 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]