These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16655096)

  • 1. Utilization of D-Glucuronate by Corn Coleoptiles.
    Slater WG; Beevers H
    Plant Physiol; 1958 Mar; 33(2):146-51. PubMed ID: 16655096
    [No Abstract]   [Full Text] [Related]  

  • 2. Characterization and expression patterns of UDP-D-glucuronate decarboxylase genes in barley.
    Zhang Q; Shirley N; Lahnstein J; Fincher GB
    Plant Physiol; 2005 May; 138(1):131-41. PubMed ID: 15849307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aldohexuronic acid catabolism by a soil Aeromonas.
    Farmer JJ; Eagon RG
    J Bacteriol; 1969 Jan; 97(1):97-106. PubMed ID: 4388117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gravitropic Responses of Partially Decapitated Corn Coleoptiles with and without Applied [C]Indoleacetic Acid.
    Hatfield RD; Lamotte CE
    Plant Physiol; 1985 Feb; 77(2):475-80. PubMed ID: 16664078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A putative role of the xanthophyll, zeaxanthin, in blue light photoreception of corn coleoptiles.
    Quiñlones MA; Zeiger E
    Science; 1994 Apr; 264(5158):558-61. PubMed ID: 17732741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concerning the mechanism for transfer of D-glucuronate from myo-inositol oxygenase to D-glucuronate reductase.
    Naber NI; Hamilton GA
    Biochim Biophys Acta; 1987 Feb; 911(3):365-8. PubMed ID: 3814609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhythmicity in the Basipetal Transport of Indoleacetic Acid through Coleoptiles.
    Shen-Miller J
    Plant Physiol; 1973 Apr; 51(4):615-9. PubMed ID: 16658381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gradients of polyamines and their biosynthetic enzymes in coleoptiles and roots of corn.
    Dumortier FM; Flores HE; Shekhawat NS; Galston AW
    Plant Physiol; 1983 Aug; 72(4):915-8. PubMed ID: 16663138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility of D-glucuronate to enhance gamma-hydroxybutyric acid metabolism during gamma-hydroxybutyric acid toxicity: pharmacokinetic and pharmacodynamic studies.
    Bhattacharya I; Boje KM
    Biopharm Drug Dispos; 2007 Jan; 28(1):1-11. PubMed ID: 17061294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhythmic Differences in the Basipetal Movement of Indoleacetic Acid between Separated Upper and Lower Halves of Geotropically Stimulated Corn Coleoptiles.
    Shen-Miller J
    Plant Physiol; 1973 Aug; 52(2):166-70. PubMed ID: 16658520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of red light on the phototropic sensitivity of corn coleoptiles.
    Chon HP; Briggs WR
    Plant Physiol; 1966 Dec; 41(10):1715-24. PubMed ID: 16656463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium binding to D-glucuronate residues: crystal structure of a hydrated calcium bromide salt of D-glucuronic acid.
    DeLucas L; Bugg CE
    Carbohydr Res; 1975 May; 41():18-29. PubMed ID: 1137835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship Between Metabolism and the Lateral Transport of IAA in Corn Coleoptiles.
    Wilkins MB; Whyte P
    Plant Physiol; 1968 Sep; 43(9):1435-42. PubMed ID: 16656934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel pathway for fungal D-glucuronate catabolism contains an L-idonate forming 2-keto-L-gulonate reductase.
    Kuivanen J; Sugai-Guérios MH; Arvas M; Richard P
    Sci Rep; 2016 May; 6():26329. PubMed ID: 27189775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for a KCl-Stimulated, Mg-ATPase on the Golgi of Corn Coleoptiles.
    Chanson A; McNaughton E; Taiz L
    Plant Physiol; 1984 Oct; 76(2):498-507. PubMed ID: 16663871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid stimulation of free glucuronate formation by non-glucuronidable xenobiotics in isolated rat hepatocytes.
    Linster CL; Van Schaftingen E
    J Biol Chem; 2003 Sep; 278(38):36328-33. PubMed ID: 12865420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of osmotic stress on the kinds, forms and levels of polyamines in wheat coleoptiles.
    Liu HP; Zhu ZX; Liu TX; Li CH
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Jun; 32(3):293-9. PubMed ID: 16775396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NADPH-dependent 5-keto-D-gluconate reductase is a part of the fungal pathway for D-glucuronate catabolism.
    Kuivanen J; Richard P
    FEBS Lett; 2018 Jan; 592(1):71-77. PubMed ID: 29265364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses by coleoptiles of intact rice seedlings to anoxia: k(+) net uptake from the external solution and translocation from the caryopses.
    Huang S; Greenway H; Colmer TD
    Ann Bot; 2003 Jan; 91 Spec No(2):271-8. PubMed ID: 12509347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic studies on NADPH-linked aldehyde reductase from human liver.
    Wermuth B; von Wartburg JP
    Adv Exp Med Biol; 1980; 132():189-95. PubMed ID: 7424706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.