These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 16655851)

  • 1. Further Studies on the Photochemical Production of Reduced Triphosphopyridine Nucleotide and Adenosine Triphosphate by Fragmented Spinach Chloroplasts.
    Fewson CA; Black CC; Gibbs M
    Plant Physiol; 1963 Nov; 38(6):680-5. PubMed ID: 16655851
    [No Abstract]   [Full Text] [Related]  

  • 2. FURTHER STUDIES ON ACTION SPECTRA AND QUANTUM REQUIREMENTS FOR TRIPHOSPHOPYRIDINE NUCLEOTIDE REDUCTION AND THE FORMATION OF ADENOSINE TRIPHOSPHATE BY SPINACH CHLOROPLASTS. ANL-6823.
    BLACK CC; FEWSON CA; GIBBS M; GORDON SA
    ANL Rep; 1964 Jan; ():191-8. PubMed ID: 14151655
    [No Abstract]   [Full Text] [Related]  

  • 3. STUDIES ON PHOTOSYNTHETIC PROCESSES. III. FURTHER STUDIES ON ACTION SPECTRA AND QUANTUM REQUIREMENTS FOR TRIPHOSPHOPYRIDINE NUCLEOTIDE REDUCTION AND THE FORMATION OF ADENOSINE TRIPHOSPHATE BY SPINACH CHLOROPLASTS.
    BLACK CC; FEWSON CA; GIBBS M; GORDON SA
    J Biol Chem; 1963 Nov; 238():3802-5. PubMed ID: 14109223
    [No Abstract]   [Full Text] [Related]  

  • 4. Studies on photosynthetic processes. II. Action spectra and quantum requirement for triphosphopyridine nucleotide reduction and the formation of adenosine triphosphate by spinach chloroplasts.
    BLACK CC; TURNER JF; GIBBS M; KROGMANN DW; GORDON SA
    J Biol Chem; 1962 Feb; 237():580-3. PubMed ID: 13869646
    [No Abstract]   [Full Text] [Related]  

  • 5. Studies on photosynthetic processes. I. The effect of light intensity on triphosphopyridine nucleotide reduction, adenosine triphosphate formation, and carbon dioxide assimilation in spinach chloroplasts.
    TURNER JF; BLACK CC; GIBBS M
    J Biol Chem; 1962 Feb; 237():577-9. PubMed ID: 13923211
    [No Abstract]   [Full Text] [Related]  

  • 6. Inhibitor Studies on Carbon Dioxide Fixation, Adenosine Triphosphate Formation, & Triphosphopyridine Nucleotide Reduction by Spinach Chloroplasts.
    Bamberger ES; Black CC; Fewson CA; Gibbs M
    Plant Physiol; 1963 Jul; 38(4):483-7. PubMed ID: 16655820
    [No Abstract]   [Full Text] [Related]  

  • 7. Formation of glycolate by a reconstituted spinach chloroplast preparation.
    Shain Y; Gibbs M
    Plant Physiol; 1971 Sep; 48(3):325-30. PubMed ID: 16657791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The correlation of lipid release and photochemical activities in isolated spinach chloroplasts.
    Heise KP; Jacobi G
    Z Naturforsch C; 1973; 28(3):120-7. PubMed ID: 4271596
    [No Abstract]   [Full Text] [Related]  

  • 9. STUDIES ON THE HYDROLYSIS OF ADENOSINE TRIPHOSPHATE BY SPINACH CHLOROPLASTS.
    PETRACK B; CRASTON A; SHEPPY F; FARRON F
    J Biol Chem; 1965 Feb; 240():906-14. PubMed ID: 14275152
    [No Abstract]   [Full Text] [Related]  

  • 10. PHOTOCHEMICAL ACTIVITY OF SPINACH CHLOROPLAST FRAGMENTS WITH AROMATIC COMPOUNDS.
    BLACK CC
    Biochim Biophys Acta; 1965 Jan; 94():27-30. PubMed ID: 14273407
    [No Abstract]   [Full Text] [Related]  

  • 11. Synthesis of bound adenosine triphosphate from bound adenosine diphosphate by the purified coupling factor 1 of chloroplasts. Evidence for direct involvement of the coupling factor in this "adenylate kinase-like" reaction.
    Moudrianakis EN; Tiefert MA
    J Biol Chem; 1976 Dec; 251(24):7796-801. PubMed ID: 12178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An enzyme from spinach chloroplasts catalyzing adenosine triphosphate-adenosine diphosphate exchange.
    KAHN JS; JAGENDORF AT
    J Biol Chem; 1961 Mar; 236():940-3. PubMed ID: 13750747
    [No Abstract]   [Full Text] [Related]  

  • 13. Interconversions of mitochondrial pyridine nucleotides.
    Bernofsky C; Utter MF
    Science; 1968 Mar; 159(3821):1362-3. PubMed ID: 4384556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach.
    Hong F; Zhou J; Liu C; Yang F; Wu C; Zheng L; Yang P
    Biol Trace Elem Res; 2005; 105(1-3):269-79. PubMed ID: 16034170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence concerning the mechanism of adenosine triphosphate formation by spinach chloroplasts.
    AVRON M; JAGENDORF AT
    J Biol Chem; 1959 Apr; 234(4):967-72. PubMed ID: 13654301
    [No Abstract]   [Full Text] [Related]  

  • 16. Photoaffinity cross-linking of F1ATPase from spinach chloroplasts by 3'-arylazido-beta-alanyl-8-azido ATP.
    Schäfer HJ; Rathgeber G; Schuhen A; Berzborn RJ
    FEBS Lett; 1994 Mar; 340(3):265-8. PubMed ID: 8131856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of triphosphopyridine nucleotide and of adenosine triphosphate on pigeon liver oxalacetic carboxylase.
    VENNESLAND B; EVANS EA; ALTMAN KI
    J Biol Chem; 1947 Dec; 171(2):675-86. PubMed ID: 20272107
    [No Abstract]   [Full Text] [Related]  

  • 18. Influence of adenine nucleotides on the inhibition of photophosphorylation in spinach chloroplasts by N-ethylmaleimide.
    Magnusson RP; McCarty RE
    J Biol Chem; 1975 Apr; 250(7):2593-8. PubMed ID: 235518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Adenine nucleotide translocation in spinach chloroplasts].
    Heldt HW
    Hoppe Seylers Z Physiol Chem; 1969 Oct; 350(10):1156. PubMed ID: 5352308
    [No Abstract]   [Full Text] [Related]  

  • 20. Adenosine 5'-sulphatophosphate kinase activity in spinach leaf tissue.
    Burnell JN; Anderson JW
    Biochem J; 1973 Jun; 134(2):565-79. PubMed ID: 16742818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.