These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 16655908)

  • 1. Relationship between the Physical Nature of Mitochondrial Membranes and Chilling Sensitivity in Plants.
    Lyons JM; Wheaton TA; Pratt HK
    Plant Physiol; 1964 Mar; 39(2):262-8. PubMed ID: 16655908
    [No Abstract]   [Full Text] [Related]  

  • 2. Search for an endotherm in chloroplast lamellar membranes associated with chilling-inhibition of photosynthesis.
    Low PS; Ort DR; Cramer WA; Whitmarsh J; Martin B
    Arch Biochem Biophys; 1984 Jun; 231(2):336-44. PubMed ID: 6732236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid-protein interactions in thylakoid membranes of chilling-resistant and -sensitive plants studied by spin label electron spin resonance spectroscopy.
    Li G; Knowles PF; Murphy DJ; Marsh D
    J Biol Chem; 1990 Oct; 265(28):16867-72. PubMed ID: 2170358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-dependent phase behavior of phosphatidylglycerols from chilling-sensitive and chilling-resistant plants.
    Murata N; Yamaya J
    Plant Physiol; 1984 Apr; 74(4):1016-24. PubMed ID: 16663496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-induced Changes in Hill Activity of Chloroplasts Isolated from Chilling-sensitive and Chilling-resistant Plants.
    Nolan WG; Smillie RM
    Plant Physiol; 1977 Jun; 59(6):1141-5. PubMed ID: 16660010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation.
    Wada H; Gombos Z; Murata N
    Nature; 1990 Sep; 347(6289):200-3. PubMed ID: 2118597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphatidylglycerol and chilling sensitivity in plants.
    Roughan PG
    Plant Physiol; 1985 Mar; 77(3):740-6. PubMed ID: 16664127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase transitions in liposomes formed from the polar lipids of mitochondria from chilling-sensitive plants.
    Raison JK; Orr GR
    Plant Physiol; 1986 Jul; 81(3):807-11. PubMed ID: 16664907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of chilling on the biochemical and functional properties of thylakoid membranes.
    Walker MA; McKersie BD; Pauls KP
    Plant Physiol; 1991 Oct; 97(2):663-9. PubMed ID: 16668450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comparison of the Effects of Chilling on Thylakoid Electron Transfer in Pea (Pisum sativum L.) and Cucumber (Cucumis sativus L.).
    Peeler TC; Naylor AW
    Plant Physiol; 1988 Jan; 86(1):147-51. PubMed ID: 16665857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The FRO2 ferric reductase is required for glycine betaine's effect on chilling tolerance in Arabidopsis roots.
    Einset J; Winge P; Bones AM; Connolly EL
    Physiol Plant; 2008 Oct; 134(2):334-41. PubMed ID: 18513375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A chilling sensitive mutant of Arabidopsis with altered steryl-ester metabolism.
    Hugly S; McCourt P; Browse J; Patterson GW; Somerville C
    Plant Physiol; 1990 Jul; 93(3):1053-62. PubMed ID: 16667557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chilling stress and mitochondrial genome rearrangement in the MSC16 cucumber mutant affect the alternative oxidase and antioxidant defense system to a similar extent.
    Szal B; Lukawska K; ZdoliƄska I; Rychter AM
    Physiol Plant; 2009 Dec; 137(4):435-45. PubMed ID: 19549067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of transketolase gene promotes chilling tolerance by increasing the activities of photosynthetic enzymes, alleviating oxidative damage and stabilizing cell structure in Cucumis sativus L.
    Bi H; Li F; Wang H; Ai X
    Physiol Plant; 2019 Dec; 167(4):502-515. PubMed ID: 30548278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chilling and Drought Stresses in Crop Plants: Implications, Cross Talk, and Potential Management Opportunities.
    Hussain HA; Hussain S; Khaliq A; Ashraf U; Anjum SA; Men S; Wang L
    Front Plant Sci; 2018; 9():393. PubMed ID: 29692787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the aquaporin PIP1 subfamily in the chilling tolerance of rice.
    Matsumoto T; Lian HL; Su WA; Tanaka D; Liu Cw; Iwasaki I; Kitagawa Y
    Plant Cell Physiol; 2009 Feb; 50(2):216-29. PubMed ID: 19098326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low and High Temperature Limits to PSII : A Survey Using trans-Parinaric Acid, Delayed Light Emission, and F(o) Chlorophyll Fluorescence.
    Terzaghi WB; Fork DC; Berry JA; Field CB
    Plant Physiol; 1989 Dec; 91(4):1494-500. PubMed ID: 16667207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melatonin Mitigates Chilling-Induced Oxidative Stress and Photosynthesis Inhibition in Tomato Plants.
    Wang M; Zhang S; Ding F
    Antioxidants (Basel); 2020 Mar; 9(3):. PubMed ID: 32155702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoinhibition at low temperature in chilling-sensitive and -resistant plants.
    Hetherington SE; He J; Smillie RM
    Plant Physiol; 1989 Aug; 90(4):1609-15. PubMed ID: 16666971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycerolipidome responses to freezing- and chilling-induced injuries: examples in Arabidopsis and rice.
    Zheng G; Li L; Li W
    BMC Plant Biol; 2016 Mar; 16():70. PubMed ID: 27000868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.