These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16656584)

  • 1. Polar transport related to mobilization of plant constituents.
    Zaerr JB; Mitchell JW
    Plant Physiol; 1967 Jun; 42(6):863-74. PubMed ID: 16656584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auxin transport in roots : IX. Movement, export, resorption and loss of radioactivity from IAA by Zea root segments.
    Wilkins MB; Cane AR; McCorquodale I
    Planta; 1972 Dec; 106(4):291-310. PubMed ID: 24477304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polar transport and accumulation of indole-3-acetic acid during root regeneration by Pinus lambertiana embryos.
    Greenwood MS; Goldsmith MH
    Planta; 1970 Dec; 95(4):297-313. PubMed ID: 24497144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of auxin transport in pea (Pisum sativum L.) by phenylacetic acid: inhibition of polar auxin transport in intact plants and stem segments.
    Morris DA; Johnson CF
    Planta; 1987 Nov; 172(3):408-16. PubMed ID: 24225926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The decrease in auxin polar transport down the lupin hypocotyl could produce the indole-3-acetic Acid distribution responsible for the elongation growth pattern.
    Sánchez-Bravo J; Ortuño AM; Botía JM; Acosta M; Sabater F
    Plant Physiol; 1992 Sep; 100(1):108-14. PubMed ID: 16652931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auxin transport in roots : VII. Uptake and movement of radioactivity from IAA-(14)C by Zea roots.
    Wilkins MB; Cane AR; McCorquodale I
    Planta; 1972 Jun; 105(2):93-113. PubMed ID: 24477751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applicability of the chemiosmotic polar diffusion theory to the transport of indol-3yl-acetic acid in the intact pea (Pisum sativum L.).
    Johnson CF; Morris DA
    Planta; 1989 May; 178(2):242-8. PubMed ID: 24212754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The rib1 mutant of Arabidopsis has alterations in indole-3-butyric acid transport, hypocotyl elongation, and root architecture.
    Poupart J; Rashotte AM; Muday GK; Waddell CS
    Plant Physiol; 2005 Nov; 139(3):1460-71. PubMed ID: 16258013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of the Secondary Abscission Zone Induced by the Interaction of Methyl Jasmonate and Auxin in
    Marasek-Ciolakowska A; Saniewski M; Dziurka M; Kowalska U; Góraj-Koniarska J; Ueda J; Miyamoto K
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32316348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis.
    Rashotte AM; Poupart J; Waddell CS; Muday GK
    Plant Physiol; 2003 Oct; 133(2):761-72. PubMed ID: 14526119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments.
    Ludwig-Müller J; Vertocnik A; Town CD
    J Exp Bot; 2005 Aug; 56(418):2095-105. PubMed ID: 15955788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decarboxylation and transport of auxin in segments of sunflower and cabbage roots.
    Iversen TH; Aasheim T
    Planta; 1970 Dec; 93(4):354-62. PubMed ID: 24496770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auxin transport in roots : IV. Effects of light on IAA movement and geotropic responsiveness in Zea roots.
    Scott TK; Wilkins MB
    Planta; 1969 Sep; 87(3):249-58. PubMed ID: 24504757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basipetally polarised transport of [(3)H]gibberellin A 1 and [ (14)C]gibberellin A 3, and acropetal polarity of [ (14)C]indole-3-acetic acid transport, in stelar tissues of Phaseolus coccineus roots.
    Hartung W; Phillips ID
    Planta; 1974 Dec; 118(4):311-22. PubMed ID: 24442375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the Indole-3-Acetic Acid (IAA) Transport Inhibitors N-1-Naphthylphthalamic Acid and Morphactin on Endogenous IAA Dynamics in Relation to Compression Wood Formation in 1-Year-Old Pinus sylvestris (L.) Shoots.
    Sundberg B; Tuominen H; Little C
    Plant Physiol; 1994 Oct; 106(2):469-476. PubMed ID: 12232343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effects of IAA and stimulated microgravity on formation of adventitious roots of Chinese cabbage].
    Li XF; He YK; Tang ZC
    Shi Yan Sheng Wu Xue Bao; 2000 Jun; 33(2):179-87. PubMed ID: 12548982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translocation of Indole-3-acetic Acid-1'-C and Tryptophan-1-C in Seedlings of Phaseolus coccineus L. and Zea mays L.
    Whitehouse RL; Zalik S
    Plant Physiol; 1967 Oct; 42(10):1363-72. PubMed ID: 16656664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auxin transport in roots : II. Polar flux of IAA in Zea roots.
    Scott TK; Wilkins MB
    Planta; 1968 Dec; 83(4):323-34. PubMed ID: 24519273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endogenous and exogenous auxin in the control of root growth.
    Pilet PE; Elliott MC; Moloney MM
    Planta; 1979 Sep; 146(4):405-8. PubMed ID: 24318245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some aspects of the control of root growth and georeaction: the involvement of indoleacetic Acid and abscisic Acid.
    Pilet PE
    Plant Physiol; 1981 May; 67(5):1047-50. PubMed ID: 16661780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.