These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 16656607)

  • 21. Lateral Transport of Ions into the Xylem of Corn Roots: II. Evaluation of a Stelar Pump.
    Läuchli A; Spurr AR; Epstein E
    Plant Physiol; 1971 Aug; 48(2):118-24. PubMed ID: 16657747
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Root-zone hypoxia reduces growth of the tropical forage grass Urochloa humidicola in high-nutrient but not low-nutrient conditions.
    Jiménez JC; Kotula L; Veneklaas EJ; Colmer TD
    Ann Bot; 2019 Nov; 124(6):1019-1032. PubMed ID: 31152584
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrastructure of xylem parenchyma cells of barley roots in relation to ion transport to the xylem.
    Läuchli A; Kramer D; Pitman MG; Lüttge U
    Planta; 1974 Jun; 119(2):85-99. PubMed ID: 24442449
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequential depolarization of root cortical and stelar cells induced by an acute salt shock - implications for Na(+) and K(+) transport into xylem vessels.
    Wegner LH; Stefano G; Shabala L; Rossi M; Mancuso S; Shabala S
    Plant Cell Environ; 2011 May; 34(5):859-69. PubMed ID: 21332511
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of external cations and respiratory inhibitors on electrical potential of the xylem exudate of excised corn roots.
    Davis RF; Higinbotham N
    Plant Physiol; 1969 Oct; 44(10):1383-92. PubMed ID: 16657214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Localization and identification of auxin in roots of Zea mays.
    Greenwood MS; Hillman JR; Shaw S; Wilkins MB
    Planta; 1973 Dec; 109(4):369-74. PubMed ID: 24474215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. l-Malate as an Essential Component of the Xylem Fluid of Corn Seedling Roots.
    Butz RG; Long RC
    Plant Physiol; 1979 Nov; 64(5):684-9. PubMed ID: 16661035
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accumulation and radial transport of ions from potassium salts by cucumber roots.
    Cooil BJ
    Plant Physiol; 1974 Feb; 53(2):158-63. PubMed ID: 16658668
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Radial transport of salt and water in roots of the common reed (Phragmites australis Trin. ex Steudel).
    Fritz M; Ehwald R
    Plant Cell Environ; 2013 Oct; 36(10):1860-70. PubMed ID: 23488547
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microgradients of microbial oxygen consumption in a barley rhizosphere model system.
    Højberg O; Sørensen J
    Appl Environ Microbiol; 1993 Feb; 59(2):431-7. PubMed ID: 16348868
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tissue specific control of the maize (Zea mays L.) embryo, cortical parenchyma, and stele proteomes by RUM1 which regulates seminal and lateral root initiation.
    Saleem M; Lamkemeyer T; Schützenmeister A; Fladerer C; Piepho HP; Nordheim A; Hochholdinger F
    J Proteome Res; 2009 May; 8(5):2285-97. PubMed ID: 19267494
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ion transport in seminal and adventitious roots of cereals during O2 deficiency.
    Colmer TD; Greenway H
    J Exp Bot; 2011 Jan; 62(1):39-57. PubMed ID: 20847100
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Light microscopy observations of tetrazolium-reducing bacteria in the endorhizosphere of maize and other grasses in Brazil.
    Patriquin DG; Döbereiner J
    Can J Microbiol; 1978 Jun; 24(6):734-42. PubMed ID: 667740
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Partitioning of previously-accumulated nitrate to translocation, reduction, and efflux in corn roots.
    Mackown CT; Jackson WA; Volk RJ
    Planta; 1983 Feb; 157(1):8-14. PubMed ID: 24263939
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of root hydrophobic barriers in salt exclusion of a mangrove plant Avicennia officinalis.
    Krishnamurthy P; Jyothi-Prakash PA; Qin L; He J; Lin Q; Loh CS; Kumar PP
    Plant Cell Environ; 2014 Jul; 37(7):1656-71. PubMed ID: 24417377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of CCCP on ion fluxes in the stele and cortex of maize roots.
    Baker DA
    Planta; 1973 Dec; 112(4):293-9. PubMed ID: 24468809
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potassium Transport in Corn Roots : IV. Characterization of the Linear Component.
    Kochian LV; Xin-Zhi J; Lucas WJ
    Plant Physiol; 1985 Nov; 79(3):771-6. PubMed ID: 16664490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. During measurements of root hydraulics with pressure probes, the contribution of unstirred layers is minimized in the pressure relaxation mode: comparison with pressure clamp and high-pressure flowmeter.
    Knipfer T; Das D; Steudle E
    Plant Cell Environ; 2007 Jul; 30(7):845-60. PubMed ID: 17547656
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computed tomography scanning can monitor the effects of soil medium on root system development: an example of salt stress in corn.
    Subramanian S; Han L; Dutilleul P; Smith DL
    Front Plant Sci; 2015; 6():256. PubMed ID: 25972876
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potassium transport in salt-stressed barley roots.
    Lynch J; Läuchli A
    Planta; 1984 Jun; 161(4):295-301. PubMed ID: 24253717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.