These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 16656767)

  • 21. Transcriptome analysis during berry development provides insights into co-regulated and altered gene expression between a seeded wine grape variety and its seedless somatic variant.
    Nwafor CC; Gribaudo I; Schneider A; Wehrens R; Grando MS; Costantini L
    BMC Genomics; 2014 Nov; 15(1):1030. PubMed ID: 25431125
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sun drying of seedless and seeded grapes.
    Doymaz I
    J Food Sci Technol; 2012 Apr; 49(2):214-20. PubMed ID: 23572844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of natural variation in berry size on the volatile profiles of Vitis vinifera L. cv. Merlot and Cabernet Gernischt grapes.
    Xie S; Tang Y; Wang P; Song C; Duan B; Zhang Z; Meng J
    PLoS One; 2018; 13(9):e0201374. PubMed ID: 30231031
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 'Cardinal' grape parentage: a case of a breeding mistake.
    Akkak A; Boccacci P; Botta R
    Genome; 2007 Mar; 50(3):325-8. PubMed ID: 17502906
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-term impact of deficit irrigation on the physical quality of berries in 'Crimson Seedless' table grapes.
    Conesa MR; de la Rosa JM; Artés-Hernández F; Dodd IC; Domingo R; Pérez-Pastor A
    J Sci Food Agric; 2015 Sep; 95(12):2510-20. PubMed ID: 25367131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and expression analysis of genes associated with the early berry development in the seedless grapevine (Vitis vinifera L.) cultivar Sultanine.
    Costenaro-da-Silva D; Passaia G; Henriques JA; Margis R; Pasquali G; Revers LF
    Plant Sci; 2010 Nov; 179(5):510-9. PubMed ID: 21802609
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular Characterization and Phylogenetic Analysis of MADS-Box Gene
    Rahman MA; Balasubramani SP; Basha SM
    Genes (Basel); 2021 Feb; 12(2):. PubMed ID: 33562620
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extractable amounts of trans-resveratrol in seed and berry skin in Vitis evaluated at the germplasm level.
    Li X; Wu B; Wang L; Li S
    J Agric Food Chem; 2006 Nov; 54(23):8804-11. PubMed ID: 17090126
    [TBL] [Abstract][Full Text] [Related]  

  • 29. First Report of Shoot Blight of Grapevine Caused by Sclerotinia sclerotiorum in Chile.
    Latorre BA; Guerrero MJ
    Plant Dis; 2001 Oct; 85(10):1122. PubMed ID: 30823300
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of foliar spray of agricultural grade mineral oil in springtime, in combination with potassium and calcium sulfates on the phenological and biophysical indices of clusters, and foliar nutritional levels in grapevine (Vitis vinifera L.) cv. Sultana (Id. Thompson seedless, Sultanina).
    Karimi R; Saberi A; Khadivi A
    Biol Res; 2021 Sep; 54(1):28. PubMed ID: 34496968
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional characterization and developmental expression profiling of gibberellin signalling components in Vitis vinifera.
    Acheampong AK; Hu J; Rotman A; Zheng C; Halaly T; Takebayashi Y; Jikumaru Y; Kamiya Y; Lichter A; Sun TP; Or E
    J Exp Bot; 2015 Mar; 66(5):1463-76. PubMed ID: 25588745
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Outbreaks of Cladosporium Rot Associated with Delayed Harvest Wine Grapes in Chile.
    Briceño EX; Latorre BA
    Plant Dis; 2007 Aug; 91(8):1060. PubMed ID: 30780470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The biological activity of fluorogibberellins.
    Stoddart JL
    Planta; 1972 Mar; 107(1):81-8. PubMed ID: 24477351
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of Gibberellin-like substances by an autotrophically grown Thiobacillus.
    Gairola C; Bhalla PR; Sabharwal PS; Aleem MI
    Planta; 1972 Jun; 106(2):177-80. PubMed ID: 24477960
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving the Berry Quality and Antioxidant Potential of Flame Seedless Grapes by Foliar Application of Chitosan-Phenylalanine Nanocomposites (CS-Phe NCs).
    Gohari G; Zareei E; Kulak M; Labib P; Mahmoudi R; Panahirad S; Jafari H; Mahdavinia G; Juárez-Maldonado A; Lorenzo JM
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using Zinc Oxide Nanoparticles to Improve the Color and Berry Quality of Table Grapes Cv. Crimson Seedless.
    Abou El-Nasr MK; El-Hennawy HM; Samaan MSF; Salaheldin TA; Abou El-Yazied A; El-Kereamy A
    Plants (Basel); 2021 Jun; 10(7):. PubMed ID: 34202840
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exogenous Abscisic Acid Promotes Anthocyanin Biosynthesis and Increased Expression of Flavonoid Synthesis Genes in
    Koyama R; Roberto SR; de Souza RT; Borges WFS; Anderson M; Waterhouse AL; Cantu D; Fidelibus MW; Blanco-Ulate B
    Front Plant Sci; 2018; 9():323. PubMed ID: 29632542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolution of volatile compounds during the development of cabernet sauvignon grapes (Vitis vinifera L.).
    Kalua CM; Boss PK
    J Agric Food Chem; 2009 May; 57(9):3818-30. PubMed ID: 19309150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. QTL analysis for fruit yield components in table grapes (Vitis vinifera).
    Fanizza G; Lamaj F; Costantini L; Chaabane R; Grando MS
    Theor Appl Genet; 2005 Aug; 111(4):658-64. PubMed ID: 15995866
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolomic profile combined with transcriptomic analysis reveals the value of UV-C in improving the utilization of waste grape berries.
    Zhang K; Chen L; Wei M; Qiao H; Zhang S; Li Z; Fang Y; Chen K
    Food Chem; 2021 Nov; 363():130288. PubMed ID: 34120043
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.