These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16656840)

  • 1. Light-Induced Chloroplast Shrinkage in vivo Detectable After Rapid Isolation of Chloroplasts From Pisum sativum.
    Nobel PS
    Plant Physiol; 1968 May; 43(5):781-7. PubMed ID: 16656840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-induced Changes in the Ultrastructure of Pea Chloroplasts in Vivo: Relationship to Development and Photosynthesis.
    Miller MM; Nobel PS
    Plant Physiol; 1972 Apr; 49(4):535-41. PubMed ID: 16657996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initial ATP Formation, NADP Reduction, CO(2) Fixation, and Chloroplast Flattening Upon Illuminating Pea Leaves.
    Nobel PS; Chang DT; Wang CT; Smith SS; Barcus DE
    Plant Physiol; 1969 May; 44(5):655-61. PubMed ID: 16657117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photosynthetic Studies on a Pea-mutant Deficient in Chlorophyll.
    Highkin HR; Boardman NK; Goodchild DJ
    Plant Physiol; 1969 Sep; 44(9):1310-20. PubMed ID: 16657204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concentrations of long-chain acyl-acyl carrier proteins during fatty acid synthesis by chloroplasts isolated from pea (Pisum sativum), safflower (Carthamus tinctoris), and amaranthus (Amaranthus lividus) leaves.
    Roughan G; Nishida I
    Arch Biochem Biophys; 1990 Jan; 276(1):38-46. PubMed ID: 2297229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of chlorophyll B, and the fluorescence properties and photochemical activities of isolated plastids from greening pea seedlings.
    Thorne SW; Boardman NK
    Plant Physiol; 1971 Feb; 47(2):252-61. PubMed ID: 16657605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmotic adjustment by intact isolated chloroplasts in response to osmotic stress and its effect on photosynthesis and chloroplast volume.
    Robinson SP
    Plant Physiol; 1985 Dec; 79(4):996-1002. PubMed ID: 16664560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of light quality on the organization of photosynthetic electron transport chain of pea seedlings.
    Voskresenskaya NP; Drozdova IS
    Plant Physiol; 1977 Feb; 59(2):151-4. PubMed ID: 16659805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructural and Photometric Evidence for Light-Induced Changes in Chloroplast Structure in vivo.
    Packer L; Barnard AC; Deamer DW
    Plant Physiol; 1967 Feb; 42(2):283-93. PubMed ID: 16656505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The light-dependent control of chloroplast development in barley (Hordeum vulgare L).
    Apel K; Gollmer I; Batschauer A
    J Cell Biochem; 1983; 23(1-4):181-9. PubMed ID: 6202706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of cations upon chloroplast membrane subunit. Interactions and excitation energy distribution.
    Arntzen CJ; Ditto CL
    Biochim Biophys Acta; 1976 Nov; 449(2):259-74. PubMed ID: 990294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-induced volume changes in spinach chloroplasts.
    Packer L; Siegenthaler PA; Nobel PS
    J Cell Biol; 1965 Aug; 26(2):593-9. PubMed ID: 5865938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A chloroplast "wake up" mechanism: Illumination with weak light activates the photosynthetic antenna function in dark-adapted plants.
    Janik E; Bednarska J; Zubik M; Luchowski R; Mazur R; Sowinski K; Grudzinski W; Garstka M; Gruszecki WI
    J Plant Physiol; 2017 Mar; 210():1-8. PubMed ID: 28040624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A large population of small chloroplasts in tobacco leaf cells allows more effective chloroplast movement than a few enlarged chloroplasts.
    Jeong WJ; Park YI; Suh K; Raven JA; Yoo OJ; Liu JR
    Plant Physiol; 2002 May; 129(1):112-21. PubMed ID: 12011343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Requirement of the light-harvesting pigment.protein complex for magnesium ion regulation of excitation energy distribution in chloroplasts.
    Lieberman JR; Bose S; Arntzen CJ
    Biochim Biophys Acta; 1978 Jun; 502(3):417-29. PubMed ID: 656408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultraviolet-B responses of nuclear genes encoding light-harvesting complex II proteins in pea (Pisum sativum) are altered by norflurazon- and photobleaching-induced chloroplast changes.
    Liu L; White MJ
    Physiol Plant; 1998 Jan; 102(1):128-138. PubMed ID: 35359123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloroplast phosphoproteins. Phosphorylation of polypeptides of the light-harvesting chlorophyll protein complex.
    Bennett J
    Eur J Biochem; 1979 Aug; 99(1):133-7. PubMed ID: 488114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light regulation of photosynthetic membrane structure, organization, and function.
    Melis A
    J Cell Biochem; 1984; 24(3):271-85. PubMed ID: 6376527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathway of starch breakdown in photosynthetic tissues of Pisum sativum.
    Stitt M; Bulpin PV; ap Rees T
    Biochim Biophys Acta; 1978 Nov; 544(1):200-14. PubMed ID: 152656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of chloroplasts with inhibitors: induction of chlorosis by diuron during prolonged illumination in vitro.
    Ridley SM
    Plant Physiol; 1977 Apr; 59(4):724-32. PubMed ID: 16659926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.