These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 16656882)

  • 1. Relationship of water potential to growth of leaves.
    Boyer JS
    Plant Physiol; 1968 Jul; 43(7):1056-62. PubMed ID: 16656882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloroplast response to low leaf water potentials: I. Role of turgor.
    Boyer JS; Potter JR
    Plant Physiol; 1973 Jun; 51(6):989-92. PubMed ID: 16658486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloroplast Response to Low Leaf Water Potentials: IV. Quantum Yield Is Reduced.
    Mohanty P; Boyer JS
    Plant Physiol; 1976 May; 57(5):704-9. PubMed ID: 16659555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials.
    Boyer JS
    Plant Physiol; 1970 Aug; 46(2):233-5. PubMed ID: 16657441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leaf water potentials measured with a pressure chamber.
    Boyer JS
    Plant Physiol; 1967 Jan; 42(1):133-7. PubMed ID: 16656476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water Potential and Stomatal Resistance of Sunflower and Soybean Subjected to Water Stress during Various Growth Stages.
    Sionit N; Kramer PJ
    Plant Physiol; 1976 Oct; 58(4):537-40. PubMed ID: 16659712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of the water relations characteristics of Helianthus annuus and Helianthus petiolaris when subjected to water deficits.
    Sobrado MA; Turner NC
    Oecologia; 1983 Jun; 58(3):309-313. PubMed ID: 28310327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydraulic architecture of plants of Helianthus annuus L. cv. Margot: evidence for plant segmentation in herbs.
    Lo Gullo MA; Castro Noval L; Salleo S; Nardini A
    J Exp Bot; 2004 Jul; 55(402):1549-56. PubMed ID: 15181104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chloroplast Response to Low Leaf Water Potentials: III. Differing Inhibition of Electron Transport and Photophosphorylation.
    Keck RW; Boyer JS
    Plant Physiol; 1974 Mar; 53(3):474-9. PubMed ID: 16658727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of oxygen evolution in chloroplasts isolated from leaves with low water potentials.
    Boyer JS; Bowen BL
    Plant Physiol; 1970 May; 45(5):612-5. PubMed ID: 16657354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of photosynthesis in sunflower after a period of low leaf water potential.
    Boyer JS
    Plant Physiol; 1971 Jun; 47(6):816-20. PubMed ID: 16657711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of Leaf Expansion by Nitrogen Nutrition in Sunflower Plants : ROLE OF HYDRAULIC CONDUCTIVITY AND TURGOR.
    Radin JW; Boyer JS
    Plant Physiol; 1982 Apr; 69(4):771-5. PubMed ID: 16662294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of salt secretion on psychrometric determinations of water potential of cotton leaves.
    Klepper B; Barrs HD
    Plant Physiol; 1968 Jul; 43(7):1138-40. PubMed ID: 16656895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correction of flow resistances of plants measured from covered and exposed leaves.
    Turner NC
    Plant Physiol; 1981 Nov; 68(5):1090-2. PubMed ID: 16662056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of recovery of leaf hydraulic conductance and vein functionality from cavitation-induced embolism in sunflower.
    Trifilò P; Gascó A; Raimondo F; Nardini A; Salleo S
    J Exp Bot; 2003 Oct; 54(391):2323-30. PubMed ID: 14504300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vein recovery from embolism occurs under negative pressure in leaves of sunflower (Helianthus annuus).
    Nardini A; Ramani M; Gortan E; Salleo S
    Physiol Plant; 2008 Aug; 133(4):755-64. PubMed ID: 18346074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaf shrinkage decreases porosity at low water potentials in sunflower.
    Tang AC; Boyer JS
    Funct Plant Biol; 2007 Feb; 34(1):24-30. PubMed ID: 32689328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the dye method with the thermocouple psychrometer for measuring leaf water potentials.
    Knipling EB; Kramer PJ
    Plant Physiol; 1967 Oct; 42(10):1315-20. PubMed ID: 16656657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of water potentials measured by in situ psychrometry and pressure chamber in morphologically different species.
    Turner NC; Spurway RA; Schulze ED
    Plant Physiol; 1984 Feb; 74(2):316-9. PubMed ID: 16663415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complete turgor maintenance at low water potentials in the elongating region of maize leaves.
    Michelena VA; Boyer JS
    Plant Physiol; 1982 May; 69(5):1145-9. PubMed ID: 16662360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.