BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 16657039)

  • 1. Selective Inhibition by Actinomycin D of the Synthesis in Photosynthetic and Non-photosynthetic Enzymes During the Greening of Etiolated Bean Leaves.
    Melandri BA; Baccarini A; Forti G
    Plant Physiol; 1969 Jan; 44(1):95-100. PubMed ID: 16657039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The development of plastocyanin in greening bean leaves.
    Haslett BG; Cammack R
    Biochem J; 1974 Dec; 144(3):567-72. PubMed ID: 4377657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative studies on ferredoxin in greening bean leaves.
    Haslett BG; Cammack R; Whatley FR
    Biochem J; 1973 Nov; 136(3):697-703. PubMed ID: 4360717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrete character of the development of the photosynthetic apparatus in greening barley leaves.
    Radyuk MS; Homan NM
    Photosynth Res; 2002; 72(1):117-22. PubMed ID: 16228540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of chlorophyll production in rapidly greening bean leaves.
    Gassman M; Bogorad L
    Plant Physiol; 1967 Jun; 42(6):774-80. PubMed ID: 16656570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-induced Polysome Formation in Etiolated Leaves: Kinetics of Inhibition by Antibiotics.
    Klein AO; Pine K
    Plant Physiol; 1977 Apr; 59(4):767-70. PubMed ID: 16659934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferredoxin and ferredoxin-NADP-oxidoreductase in leaves ofPhaseolus vulgaris L.
    Sluiters-Scholten CM; Moll WA; Stegwee D
    Planta; 1977 Jan; 133(3):289-94. PubMed ID: 24425264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light intensity affects chlorophyll synthesis during greening process by metabolite signal from mitochondrial alternative oxidase in Arabidopsis.
    Zhang DW; Yuan S; Xu F; Zhu F; Yuan M; Ye HX; Guo HQ; Lv X; Yin Y; Lin HH
    Plant Cell Environ; 2016 Jan; 39(1):12-25. PubMed ID: 25158995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plastid development in primary leaves of Phaseolus vulgaris : The effects of D-threo and L-threo chloramphenicol on the light-induced formation of enzymes of the photosynthetic carbon pathway.
    Ireland HM; Bradbeer JW
    Planta; 1971 Sep; 96(3):254-61. PubMed ID: 24493123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glyceraldehyde-3-Phosphate Dehydrogenase in Greening Zea mays L. Leaves.
    Lin CH; Stocking CR
    Plant Physiol; 1980 May; 65(5):897-901. PubMed ID: 16661304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron uptake of etioplasts is independent from photosynthesis but applies the reduction-based strategy.
    Sági-Kazár M; Sárvári É; Cseh B; Illés L; May Z; Hegedűs C; Barócsi A; Lenk S; Solymosi K; Solti Á
    Front Plant Sci; 2023; 14():1227811. PubMed ID: 37636109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the regeneration of protochlorophyllide after brief illumination of etiolated bean leaves.
    Gassman M; Bogorad L
    Plant Physiol; 1967 Jun; 42(6):781-4. PubMed ID: 16656571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlorophyll formation and the development of photosynthesis in illuminated etiolated pea leaves.
    Dowdell RJ; Dodge AD
    Planta; 1971 Mar; 98(1):11-9. PubMed ID: 24493304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biogenesis of chloroplast membranes. II. Plastid differentiation during greening of a dark-grown algal mutant (Chlamydomonas reinhardi).
    Ohad I; Siekevitz P; Palade GE
    J Cell Biol; 1967 Dec; 35(3):553-84. PubMed ID: 6064365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light piping driven photosynthesis in the soil: Low-light adapted active photosynthetic apparatus in the under-soil hypocotyl segments of bean (Phaseolus vulgaris).
    Kakuszi A; Sárvári É; Solti Á; Czégény G; Hideg É; Hunyadi-Gulyás É; Bóka K; Böddi B
    J Photochem Photobiol B; 2016 Aug; 161():422-9. PubMed ID: 27318297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subpopulations of chloroplast ribosomes change during photoregulated development of Zea mays leaves: ribosomal proteins L2, L21, and L29.
    Zhao YY; Xu T; Zucchi P; Bogorad L
    Proc Natl Acad Sci U S A; 1999 Aug; 96(16):8997-9002. PubMed ID: 10430884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of lindane on the photosynthetic apparatus of the cyanobacterium Anabaena: fluorescence induction studies and immunolocalization of ferredoxin-NADP+ reductase.
    Bueno M; Fillat MF; Strasser RJ; Maldonado-Rodriguez R; Marina N; Smienk H; Gómez-Moreno C; Barja F
    Environ Sci Pollut Res Int; 2004; 11(2):98-106. PubMed ID: 15108857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogenesis of chloroplast membranes. I. Plastid dedifferentiation in a dark-grown algal mutant (Chlamydomonas reinhardi).
    Ohad I; Siekevitz P; Palade GE
    J Cell Biol; 1967 Dec; 35(3):521-52. PubMed ID: 6064364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonreversible d-Glyceraldehyde 3-Phosphate Dehydrogenase of Plant Tissues.
    Kelly GJ; Gibbs M
    Plant Physiol; 1973 Aug; 52(2):111-8. PubMed ID: 16658509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of an Arabidopsis thaliana mutant lacking a cytosolic non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase.
    Rius SP; Casati P; Iglesias AA; Gomez-Casati DF
    Plant Mol Biol; 2006 Aug; 61(6):945-57. PubMed ID: 16927206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.