These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 16657130)

  • 1. Metabolism of C-Maltose in Avena fatua Seeds During Germination.
    Chen SS; Varner JE
    Plant Physiol; 1969 May; 44(5):770-4. PubMed ID: 16657130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Germination induction of dormant Avena fatua caryopses by KAR(1) and GA(3) involving the control of reactive oxygen species (H2O2 and O2(·-)) and enzymatic antioxidants (superoxide dismutase and catalase) both in the embryo and the aleurone layers.
    Cembrowska-Lech D; Koprowski M; Kępczyński J
    J Plant Physiol; 2015 Mar; 176():169-79. PubMed ID: 25618514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathway of sugar transport in germinating wheat seeds.
    Aoki N; Scofield GN; Wang XD; Offler CE; Patrick JW; Furbank RT
    Plant Physiol; 2006 Aug; 141(4):1255-63. PubMed ID: 16766668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early Actions of Gibberellic Acid on the Embryo and on the Endosperm of Avena fatua Seeds.
    Chen SS; Park WM
    Plant Physiol; 1973 Aug; 52(2):174-6. PubMed ID: 16658522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respiration and Protein Synthesis in Dormant and After-ripened Seeds of Avena fatua.
    Chen SS; Varner JE
    Plant Physiol; 1970 Jul; 46(1):108-12. PubMed ID: 16657399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomics analysis reveals distinct involvement of embryo and endosperm proteins during seed germination in dormant and non-dormant rice seeds.
    Xu HH; Liu SJ; Song SH; Wang RX; Wang WQ; Song SQ
    Plant Physiol Biochem; 2016 Jun; 103():219-42. PubMed ID: 27035683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue-specific transcriptome analysis reveals cell wall metabolism, flavonol biosynthesis and defense responses are activated in the endosperm of germinating Arabidopsis thaliana seeds.
    Endo A; Tatematsu K; Hanada K; Duermeyer L; Okamoto M; Yonekura-Sakakibara K; Saito K; Toyoda T; Kawakami N; Kamiya Y; Seki M; Nambara E
    Plant Cell Physiol; 2012 Jan; 53(1):16-27. PubMed ID: 22147073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and analysis of proteins that interact with the Avena fatua homologue of the maize transcription factor VIVIPAROUS 1.
    Jones HD; Kurup S; Peters NC; Holdsworth MJ
    Plant J; 2000 Jan; 21(2):133-42. PubMed ID: 10743654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SWEET Transporters for the Nourishment of Embryonic Tissues during Maize Germination.
    López-Coria M; Sánchez-Sánchez T; Martínez-Marcelo VH; Aguilera-Alvarado GP; Flores-Barrera M; King-Díaz B; Sánchez-Nieto S
    Genes (Basel); 2019 Oct; 10(10):. PubMed ID: 31591342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobilization of lipid reserves during germination of oat (Avena sativa L.), a cereal rich in endosperm oil.
    Leonova S; Grimberg A; Marttila S; Stymne S; Carlsson AS
    J Exp Bot; 2010 Jun; 61(11):3089-99. PubMed ID: 20497973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Endogenous Growth Regulators in Seed Dormancy of Avena fatua: I. Short Chain Fatty Acids.
    Metzger JD; Sebesta DK
    Plant Physiol; 1982 Nov; 70(5):1480-5. PubMed ID: 16662702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymic Mechanism of Starch Breakdown in Germinating Rice Seeds II. Scutellum as the Site of Sucrose Synthesis.
    Nomura T; Kono Y; Akazawa T
    Plant Physiol; 1969 May; 44(5):765-9. PubMed ID: 16657129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gibberellin-like effects of KAR1 on dormancy release of Avena fatua caryopses include participation of non-enzymatic antioxidants and cell cycle activation in embryos.
    Cembrowska-Lech D; Kępczyński J
    Planta; 2016 Feb; 243(2):531-48. PubMed ID: 26526413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of tricyclic butenolides and comparison their effects with known smoke-butenolide, KAR1.
    Krawczyk E; Koprowski M; Cembrowska-Lech D; Wójcik A; Kępczyński J
    J Plant Physiol; 2017 Aug; 215():91-99. PubMed ID: 28618259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Endogenous Plant Growth Regulators in Seed Dormancy of Avena fatua: II. Gibberellins.
    Metzger JD
    Plant Physiol; 1983 Nov; 73(3):791-5. PubMed ID: 16663302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coleorhiza-enforced seed dormancy: a novel mechanism to control germination in grasses.
    Holloway T; Steinbrecher T; Pérez M; Seville A; Stock D; Nakabayashi K; Leubner-Metzger G
    New Phytol; 2021 Feb; 229(4):2179-2191. PubMed ID: 32970853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genotype and environment interact to control dormancy and differential expression of the VIVIPAROUS 1 homologue in embryos of Avena fatua.
    Jones HD; Peters NC; Holdsworth MJ
    Plant J; 1997 Oct; 12(4):911-20. PubMed ID: 9375401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of soil moisture levels on the growth and reproductive behaviour of Avena fatua and Avena ludoviciana.
    Sahil ; Mahajan G; Loura D; Raymont K; Chauhan BS
    PLoS One; 2020; 15(7):e0234648. PubMed ID: 32645027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of the endosperm cell walls of Lactuca sativa L., cv. Grand Rapids : Timing of mobilisation of soluble sugars, lipid and phytate.
    Halmer P; Bewley JD; Thorpe TA
    Planta; 1978 Jan; 139(1):1-8. PubMed ID: 24414098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glyoxylate cycle and metabolism of organic acids in the scutellum of barley seeds during germination.
    Ma Z; Marsolais F; Bernards MA; Sumarah MW; Bykova NV; Igamberdiev AU
    Plant Sci; 2016 Jul; 248():37-44. PubMed ID: 27181945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.