These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 16657178)

  • 1. Control of apple ripening by succinic Acid 2,2-dimethyl hydrazide, 2-chloroethyltrimethylammonium chloride, and ethylene.
    Looney NE
    Plant Physiol; 1969 Aug; 44(8):1127-31. PubMed ID: 16657178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of apple ripening by succinic Acid, 2,2-dimethyl hydrazide and its reversal by ethylene.
    Looney NE
    Plant Physiol; 1968 Jul; 43(7):1133-7. PubMed ID: 16656894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of MdCAS1 and MdCAS2, encoding apple beta-cyanoalanine synthase homologs, is concomitantly induced during ripening and implicates MdCASs in the possible role of the cyanide detoxification in Fuji apple (Malus domestica Borkh.) fruits.
    Han SE; Seo YS; Kim D; Sung SK; Kim WT
    Plant Cell Rep; 2007 Aug; 26(8):1321-31. PubMed ID: 17333023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene-An overview.
    Paul V; Pandey R; Srivastava GC
    J Food Sci Technol; 2012 Feb; 49(1):1-21. PubMed ID: 23572821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Plant Hormones on Ethylene Production in Apple, Tomato, and Avocado Slices during Maturation and Senescence.
    Lieberman M; Baker JE; Sloger M
    Plant Physiol; 1977 Aug; 60(2):214-7. PubMed ID: 16660062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of 1-methylcyclopropene (1-MCP) on the expression of genes involved in the chlorophyll degradation pathway of apple fruit during storage.
    Lv J; Zhang M; Bai L; Han X; Ge Y; Wang W; Li J
    Food Chem; 2020 Mar; 308():125707. PubMed ID: 31669943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Ethylene Biosynthesis in Avocado Fruit during Ripening.
    Sitrit Y; Riov J; Blumenfeld A
    Plant Physiol; 1986 May; 81(1):130-5. PubMed ID: 16664762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interference with ethylene perception at receptor level sheds light on auxin and transcriptional circuits associated with the climacteric ripening of apple fruit (Malus x domestica Borkh.).
    Tadiello A; Longhi S; Moretto M; Ferrarini A; Tononi P; Farneti B; Busatto N; Vrhovsek U; Molin AD; Avanzato C; Biasioli F; Cappellin L; Scholz M; Velasco R; Trainotti L; Delledonne M; Costa F
    Plant J; 2016 Dec; 88(6):963-975. PubMed ID: 27531564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mechanistic modelling approach to understand 1-MCP inhibition of ethylene action and quality changes during ripening of apples.
    Gwanpua SG; Verlinden BE; Hertog ML; Nicolai BM; Geeraerd AH
    J Sci Food Agric; 2017 Aug; 97(11):3802-3813. PubMed ID: 28139841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of aminoethoxyvinylglycine and countereffects of ethylene on ripening of bartlett pear fruits.
    Ness PJ; Romani RJ
    Plant Physiol; 1980 Feb; 65(2):372-6. PubMed ID: 16661193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription.
    Li T; Jiang Z; Zhang L; Tan D; Wei Y; Yuan H; Li T; Wang A
    Plant J; 2016 Dec; 88(5):735-748. PubMed ID: 27476697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climacteric ripening of apple fruit is regulated by transcriptional circuits stimulated by cross-talks between ethylene and auxin.
    Busatto N; Tadiello A; Trainotti L; Costa F
    Plant Signal Behav; 2017 Jan; 12(1):e1268312. PubMed ID: 27935411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the ethylene-related signal-inhibiting octapeptide NOP-1 on postharvest ripening and quality of 'Golden Delicious' apples.
    Klein S; Fiebig A; Neuwald D; Dluhosch D; Müller L; Groth G; Noga G; Hunsche M
    J Sci Food Agric; 2019 Jun; 99(8):3903-3909. PubMed ID: 30693519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway.
    Schaffer RJ; Friel EN; Souleyre EJ; Bolitho K; Thodey K; Ledger S; Bowen JH; Ma JH; Nain B; Cohen D; Gleave AP; Crowhurst RN; Janssen BJ; Yao JL; Newcomb RD
    Plant Physiol; 2007 Aug; 144(4):1899-912. PubMed ID: 17556515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties.
    Saladié M; Cañizares J; Phillips MA; Rodriguez-Concepcion M; Larrigaudière C; Gibon Y; Stitt M; Lunn JE; Garcia-Mas J
    BMC Genomics; 2015 Jun; 16(1):440. PubMed ID: 26054931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superficial scald and bitter pit development in cold-stored transgenic apples suppressed for ethylene biosynthesis.
    Pesis E; Ibáñez AM; Phu ML; Mitcham EJ; Ebeler SE; Dandekar AM
    J Agric Food Chem; 2009 Apr; 57(7):2786-92. PubMed ID: 19253953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and expression of MdFBCP1, encoding an F-box-containing protein 1, during Fuji apple (Malus domestica Borkh.) fruit ripening.
    Han SE; Seo YS; Heo S; Kim D; Sung SK; Kim WT
    Plant Cell Rep; 2008 Aug; 27(8):1291-301. PubMed ID: 18504588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethylene-Enhanced 1-Aminocyclopropane-1-carboxylic Acid Synthase Activity in Ripening Apples.
    Bufler G
    Plant Physiol; 1984 May; 75(1):192-5. PubMed ID: 16663569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Changes in amino acid and fatty acid contents as well as activity of some related enzymes in apple fruit during aroma production].
    Nie LC; Sun JS; Di B
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Dec; 31(6):663-7. PubMed ID: 16361796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fig fruit ripening is regulated by the interaction between ethylene and abscisic acid.
    Qiao H; Zhang H; Wang Z; Shen Y
    J Integr Plant Biol; 2021 Mar; 63(3):553-569. PubMed ID: 33421307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.