These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Studies on water transport through the sweet cherry fruit surface: IX. Comparing permeability in water uptake and transpiration. Beyer M; Lau S; Knoche M Planta; 2005 Jan; 220(3):474-85. PubMed ID: 15338307 [TBL] [Abstract][Full Text] [Related]
4. Strawberry fruit skins are far more permeable to osmotic water uptake than to transpirational water loss. Hurtado G; Grimm E; Brüggenwirth M; Knoche M PLoS One; 2021; 16(5):e0251351. PubMed ID: 33984039 [TBL] [Abstract][Full Text] [Related]
5. Water potentials induced by growth in soybean hypocotyls. Cavalieri AJ; Boyer JS Plant Physiol; 1982 Feb; 69(2):492-6. PubMed ID: 16662235 [TBL] [Abstract][Full Text] [Related]
6. Water loss from litchi (Litchi chinensis) and longan (Dimocarpus longan) fruits is biphasic and controlled by a complex pericarpal transpiration barrier. Riederer M; Arand K; Burghardt M; Huang H; Riedel M; Schuster AC; Smirnova A; Jiang Y Planta; 2015 Nov; 242(5):1207-19. PubMed ID: 26159434 [TBL] [Abstract][Full Text] [Related]
7. Transpiration- and growth-induced water potentials in maize. Westgate ME; Boyer JS Plant Physiol; 1984 Apr; 74(4):882-9. PubMed ID: 16663527 [TBL] [Abstract][Full Text] [Related]
8. Stress-induced osmotic adjustment in growing regions of barley leaves. Matsuda K; Riazi A Plant Physiol; 1981 Sep; 68(3):571-6. PubMed ID: 16661959 [TBL] [Abstract][Full Text] [Related]
9. Cell water potential, osmotic potential, and turgor in the epidermis and mesophyll of transpiring leaves : Combined measurements with the cell pressure probe and nanoliter osmometer. Nonami H; Schulze ED Planta; 1989 Jan; 177(1):35-46. PubMed ID: 24212270 [TBL] [Abstract][Full Text] [Related]
10. Changes in osmotic and turgor pressure in response to sugar accumulation in barley source leaves. Koroleva OA; Tomos AD; Farrar J; Pollock CJ Planta; 2002 Jun; 215(2):210-9. PubMed ID: 12029470 [TBL] [Abstract][Full Text] [Related]
11. [Herbalogical study on historical evolution of Juhong and Huajuhong]. Wu MH; Zhong CC; Yu PH; Li F; Zhang Y; Ma ZG; Cao H Zhongguo Zhong Yao Za Zhi; 2021 Feb; 46(3):736-744. PubMed ID: 33645042 [TBL] [Abstract][Full Text] [Related]
12. Potential of the Mycoparasite, Verticillium lecanii, to Protect Citrus Fruit Against Penicillium digitatum, the Causal Agent of Green Mold: A Comparison with the Effect of Chitosan. Benhamou N Phytopathology; 2004 Jul; 94(7):693-705. PubMed ID: 18943901 [TBL] [Abstract][Full Text] [Related]
13. Separation of Synephrine Enantiomers in Citrus Fruits by a Reversed Phase HPLC after Chiral Precolumn Derivatization. Tanaka S; Sekiguchi M; Yamamoto A; Aizawa SI; Sato K; Taga A; Terashima H; Ishihara Y; Kodama S Anal Sci; 2019 Apr; 35(4):407-412. PubMed ID: 30555107 [TBL] [Abstract][Full Text] [Related]
14. Effects of manipulation of water and nitrogen regime on the water relations of the desert shrub Larrea tridentata. Meinzer FC; Sharifi MR; Nilsen ET; Rundel PW Oecologia; 1988 Dec; 77(4):480-486. PubMed ID: 28311267 [TBL] [Abstract][Full Text] [Related]
15. Studies on water transport through the sweet cherry fruit surface: III. Conductance of the cuticle in relation to fruit size. Knoche M; Peschel S; Hinz M Physiol Plant; 2002 Mar; 114(3):414-421. PubMed ID: 12060264 [TBL] [Abstract][Full Text] [Related]
16. Growth-induced water potentials and the growth of maize leaves. Tang AC; Boyer JS J Exp Bot; 2002 Mar; 53(368):489-503. PubMed ID: 11847248 [TBL] [Abstract][Full Text] [Related]
17. Diel Patterns of Water Potential Components for the Crassulacean Acid Metabolism Plant Opuntia ficus-indica when Well-Watered or Droughted. Goldstein G; Ortega JK; Nerd A; Nobel PS Plant Physiol; 1991 Jan; 95(1):274-80. PubMed ID: 16667964 [TBL] [Abstract][Full Text] [Related]
18. Seasonal patterns of leaf water relations in four co-occurring forest tree species: Parameters from pressure-volume curves. Roberts SW; Strain BR; Knoerr KR Oecologia; 1980 Sep; 46(3):330-337. PubMed ID: 28310040 [TBL] [Abstract][Full Text] [Related]
19. Day-Night Variations in Malate Concentration, Osmotic Pressure, and Hydrostatic Pressure in Cereus validus. Lüttge U; Nobel PS Plant Physiol; 1984 Jul; 75(3):804-7. PubMed ID: 16663708 [TBL] [Abstract][Full Text] [Related]
20. Water relation parameters of the CAM plant Kalanchoë daigremontiana in relation to diurnal malate oscillations. Lüttge U; Ball E Oecologia; 1977 Jan; 31(1):85-94. PubMed ID: 28309153 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]