These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 16657444)

  • 1. Photoinduced changes in the chlorophyll a to chlorophyll B ratio in young bean plants.
    Argyroudi-Akoyunoglou JH; Akoyunoglou G
    Plant Physiol; 1970 Aug; 46(2):247-9. PubMed ID: 16657444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth, Pigment Synthesis, and Ultrastructural Responses of Phaseolus vulgaris L. cv. Blue Lake to Intermittent and Flashing Light.
    Naylor AW; Giles LJ
    Plant Physiol; 1982 Jul; 70(1):257-63. PubMed ID: 16662457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The development of plastocyanin in greening bean leaves.
    Haslett BG; Cammack R
    Biochem J; 1974 Dec; 144(3):567-72. PubMed ID: 4377657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The photoenzymatic cycle of NADPH: protochlorophyllide oxidoreductase in primary bean leaves (Phaseolus vulgaris) during the first days of photoperiodic growth.
    Schoefs B; Franck F
    Photosynth Res; 2008 Apr; 96(1):15-26. PubMed ID: 17978860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changing ratios of phototransformable protochlorophyll and protochlorophyllide of bean seedlings developing in the dark.
    Lancer HA; Cohen CE; Schiff JA
    Plant Physiol; 1976 Mar; 57(3):369-74. PubMed ID: 16659485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Greening of intermittent-light-grown bean plants in continuous light: thylakoid components in relation to photosynthetic performance and capacity for photoprotection.
    Chow WS; Funk C; Hope AB; Govindjee
    Indian J Biochem Biophys; 2000 Dec; 37(6):395-404. PubMed ID: 11355626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorophyllase activity in developing leaves of Phaseolus vulgaris L.
    Moll WA; de Wit B; Lutter R
    Planta; 1978 Jan; 139(1):79-83. PubMed ID: 24414110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of chlorophyll B, and the fluorescence properties and photochemical activities of isolated plastids from greening pea seedlings.
    Thorne SW; Boardman NK
    Plant Physiol; 1971 Feb; 47(2):252-61. PubMed ID: 16657605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in Succinyl CoA Synthetase Activity in Etiolated Bean Leaves Caused by Illumination.
    Steer BT; Gibbs M
    Plant Physiol; 1969 May; 44(5):775-80. PubMed ID: 16657131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-dependent reversal of dark-chilling induced changes in chloroplast structure and arrangement of chlorophyll-protein complexes in bean thylakoid membranes.
    Garstka M; Drozak A; Rosiak M; Venema JH; Kierdaszuk B; Simeonova E; van Hasselt PR; Dobrucki J; Mostowska A
    Biochim Biophys Acta; 2005 Nov; 1710(1):13-23. PubMed ID: 16209864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implications of a developmental-stage-dependent thylakoid-bound protease in the stabilization of the light-harvesting pigment-protein complex serving photosystem II during thylakoid biogenesis in red kidney bean.
    Tziveleka LA; Argyroudi-Akoyunoglou JH
    Plant Physiol; 1998 Jul; 117(3):961-70. PubMed ID: 9662538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformation of plastids in soil-shaded lowermost hypocotyl segments of bean (Phaseolus vulgaris) during a 60-day cultivation period.
    Kakuszi A; Solymosi K; Böddi B
    Physiol Plant; 2017 Apr; 159(4):483-491. PubMed ID: 27734513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Correlated Appearance of Prolamellar Bodies, Protochlorophyll(ide) Species, and the Shibata Shift during Development of Bean Etioplasts in the Dark.
    Klein S; Schiff JA
    Plant Physiol; 1972 Apr; 49(4):619-26. PubMed ID: 16658012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of Protochlorophyllide and Chlorophyll(ide) Holochromes from Etiolated and Greening Leaves.
    Henningsen KW; Thorne SW; Boardman NK
    Plant Physiol; 1974 Mar; 53(3):419-25. PubMed ID: 16658717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light piping activates chlorophyll biosynthesis in the under-soil hypocotyl section of bean seedlings.
    Kakuszi A; Böddi B
    J Photochem Photobiol B; 2014 Nov; 140():1-7. PubMed ID: 25063979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reorganization of the Photosystem II Unit in Developing Thylakoids of Higher Plants after Transfer to Darkness : Changes in Chlorophyll b, Light-Harvesting Chlorophyll Protein Content, and Grana Stacking.
    Argyroudi-Akoyunoglou JH; Akoyunoglou A; Kalosakas K; Akoyunoglou G
    Plant Physiol; 1982 Nov; 70(5):1242-8. PubMed ID: 16662661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of the N-terminal domain of chlorophyllide a oxygenase induces photodamage during greening of Arabidopsis seedlings.
    Yamasato A; Tanaka R; Tanaka A
    BMC Plant Biol; 2008 Jun; 8():64. PubMed ID: 18549471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of the light-harvesting chlorophyll a/b protein. Control of messenger RNA activity by light.
    Cuming AC; Bennett J
    Eur J Biochem; 1981 Aug; 118(1):71-80. PubMed ID: 6169525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The flexible interrelation between AOX respiratory pathway and photosynthesis in rice leaves.
    Feng H; Li H; Li X; Duan J; Liang H; Zhi D; Ma J
    Plant Physiol Biochem; 2007; 45(3-4):228-35. PubMed ID: 17408956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light piping driven photosynthesis in the soil: Low-light adapted active photosynthetic apparatus in the under-soil hypocotyl segments of bean (Phaseolus vulgaris).
    Kakuszi A; Sárvári É; Solti Á; Czégény G; Hideg É; Hunyadi-Gulyás É; Bóka K; Böddi B
    J Photochem Photobiol B; 2016 Aug; 161():422-9. PubMed ID: 27318297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.