These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 16657611)

  • 1. Studies of sulfate utilization by algae: 8. The ubiquity of sulfate reduction to thiosulfate.
    Hodson RC; Schiff JA
    Plant Physiol; 1971 Feb; 47(2):296-9. PubMed ID: 16657611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of sulfate utilization by algae. 5. Identification of thiosulfate as a major Acid-volatile product formed by a cell-free sulfate-reducing system from chlorella.
    Levinthal M; Schiff JA
    Plant Physiol; 1968 Apr; 43(4):555-62. PubMed ID: 16656806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of Sulfate Utilization by Algae. 6. Adenosine-3'-Phosphate-5'-Phosphosulfate (PAPS) as an Intermediate in Thiosulfate Formation From Sulfate by Cell-Free Extracts of Chlorella.
    Hodson RC; Schiff JA; Scarsella AJ; Levinthal M
    Plant Physiol; 1968 Apr; 43(4):563-9. PubMed ID: 16656807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies of sulfate utilization by algae: 10. Nutritional and enzymatic characterization of chlorella mutants impaired for sulfate utilization.
    Hodson RC; Schiff JA; Mather JP
    Plant Physiol; 1971 Feb; 47(2):306-11. PubMed ID: 16657613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies of Sulfate Utilization by Algae. 7. In vivo Metabolism of Thiosulfate by Chlorella.
    Hodson RC; Schiff JA; Scarsella AJ
    Plant Physiol; 1968 Apr; 43(4):570-7. PubMed ID: 16656808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of Sulfate Utilization by Algae: 9. Fractionation of a Cell-free System from Chlorella into Two Activities Necessary for the Reduction of Adenosine 3'-Phosphate 5'-Phosphosulfate to Acid-Volatile Radioactivity.
    Hodson RC; Schiff JA
    Plant Physiol; 1971 Feb; 47(2):300-5. PubMed ID: 16657612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Complete Pathway for Thiosulfate Utilization in Saccharomyces cerevisiae.
    Chen Z; Zhang X; Li H; Liu H; Xia Y; Xun L
    Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30217845
    [No Abstract]   [Full Text] [Related]  

  • 8. Role of thiosulfate in bisulfite reduction as catalyzed by Desulfovibrio vulgaris.
    Findley JE; Akagi JM
    J Bacteriol; 1970 Sep; 103(3):741-4. PubMed ID: 5474884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple sulfur isotope signatures of sulfite and thiosulfate reduction by the model dissimilatory sulfate-reducer, Desulfovibrio alaskensis str. G20.
    Leavitt WD; Cummins R; Schmidt ML; Sim MS; Ono S; Bradley AS; Johnston DT
    Front Microbiol; 2014; 5():591. PubMed ID: 25505449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of Total Sulfur, Sulfate, Sulfite, Thiosulfate, and Sulfolipids in Plants.
    Kurmanbayeva A; Brychkova G; Bekturova A; Khozin I; Standing D; Yarmolinsky D; Sagi M
    Methods Mol Biol; 2017; 1631():253-271. PubMed ID: 28735402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of sulfate utilization by algae. 4. Properties of a cell-free sulfate-reducing system from chlorella.
    Schiff JA; Levinthal M
    Plant Physiol; 1968 Apr; 43(4):547-54. PubMed ID: 16656805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A sulfate, sulfite and thiosulfate incorporating system in Candida utilis.
    Alonso A; Benítez J; Díaz MA
    Folia Microbiol (Praha); 1984; 29(1):8-13. PubMed ID: 6538867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of sulfide and sulfite and ion-pair chromatography of mixtures of sulfide, sulfite, sulfate and thiosulfate.
    Miura Y; Matsushita Y; Haddad PR
    J Chromatogr A; 2005 Aug; 1085(1):47-53. PubMed ID: 16106847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical studies on sulfate-reducing bacteria. XIV. Enzyme levels of adenylylsulfate reductase, inorganic pyrophosphatase, sulfite reductase, hydrogenase, and adenosine triphosphatase in cells grown on sulfate, sulfite, and thiosulfate.
    Kobayashi K; Morisawa Y; Ishituka T; Ishimoto M
    J Biochem; 1975 Nov; 78(5):1079-85. PubMed ID: 175050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of thiosulfate from sulfite by Desulfovibrio vulgaris.
    Suh B; Akagi JM
    J Bacteriol; 1969 Jul; 99(1):210-5. PubMed ID: 5802606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The anodic potential shaped a cryptic sulfur cycling with forming thiosulfate in a microbial fuel cell treating hydraulic fracturing flowback water.
    Zhang X; Zhang D; Huang Y; Wu S; Lu P
    Water Res; 2020 Oct; 185():116270. PubMed ID: 32784035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfite-oxido-reductase is involved in the oxidation of sulfite in Desulfocapsa sulfoexigens during disproportionation of thiosulfate and elemental sulfur.
    Frederiksen TM; Finster K
    Biodegradation; 2003 Jun; 14(3):189-98. PubMed ID: 12889609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen sulfide production and fermentative gas production by Salmonella typhimurium require F0F1 ATP synthase activity.
    Sasahara KC; Heinzinger NK; Barrett EL
    J Bacteriol; 1997 Nov; 179(21):6736-40. PubMed ID: 9352924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic control of urea catabolism in Chlamydomonas reinhardi and Chlorella pyrenoidosa.
    Hodson RC; Williams SK; Davidson WR
    J Bacteriol; 1975 Mar; 121(3):1022-35. PubMed ID: 1116994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved fermentative L-cysteine overproduction by enhancing a newly identified thiosulfate assimilation pathway in Escherichia coli.
    Kawano Y; Onishi F; Shiroyama M; Miura M; Tanaka N; Oshiro S; Nonaka G; Nakanishi T; Ohtsu I
    Appl Microbiol Biotechnol; 2017 Sep; 101(18):6879-6889. PubMed ID: 28756590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.