BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16657824)

  • 21. Measurement of fluorescence changes of NAD(P)H and of fluorescent flavoproteins in saponin-skinned human skeletal muscle fibers.
    Kunz WS; Kuznetsov AV; Winkler K; Gellerich FN; Neuhof S; Neumann HW
    Anal Biochem; 1994 Feb; 216(2):322-7. PubMed ID: 8179187
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redox properties of beta-type cytochromes in Escherichia coli and rat liver mitochondria and techniques for their analysis.
    Hendler RW; Towne DW; Shrager RI
    Biochim Biophys Acta; 1975 Jan; 376(1):42-62. PubMed ID: 1092348
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pyruvate-sensitive AOX exists as a non-covalently associated dimer in the homeothermic spadix of the skunk cabbage, Symplocarpus renifolius.
    Onda Y; Kato Y; Abe Y; Ito T; Ito-Inaba Y; Morohashi M; Ito Y; Ichikawa M; Matsukawa K; Otsuka M; Koiwa H; Ito K
    FEBS Lett; 2007 Dec; 581(30):5852-8. PubMed ID: 18060878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alternative Respiratory Path Capacity in Plant Mitochondria: Effect of Growth Temperature, the Electrochemical Gradient, and Assay pH.
    Elthon TE; Stewart CR; McCoy CA; Bonner WD
    Plant Physiol; 1986 Feb; 80(2):378-83. PubMed ID: 16664629
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contribution of different enzymes to flavoprotein fluorescence of isolated rat liver mitochondria.
    Kunz WS; Kunz W
    Biochim Biophys Acta; 1985 Sep; 841(3):237-46. PubMed ID: 4027266
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional coexpression of the mitochondrial alternative oxidase and uncoupling protein underlies thermoregulation in the thermogenic florets of skunk cabbage.
    Onda Y; Kato Y; Abe Y; Ito T; Morohashi M; Ito Y; Ichikawa M; Matsukawa K; Kakizaki Y; Koiwa H; Ito K
    Plant Physiol; 2008 Feb; 146(2):636-45. PubMed ID: 18162588
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectral properties of fluorescent flavoproteins of isolated rat liver mitochondria.
    Kunz WS
    FEBS Lett; 1986 Jan; 195(1-2):92-6. PubMed ID: 3753688
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3.
    Sevrioukova I; Shaffer C; Ballou DP; Peterson JA
    Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic interplay between cytosolic phosphoenolpyruvate carboxylase and mitochondrial alternative oxidase in thermogenic skunk cabbage, Symplocarpus renifolius.
    Sayed MA; Umekawa Y; Ito K
    Plant Signal Behav; 2016 Nov; 11(11):e1247138. PubMed ID: 27739913
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface micro/nanotopography, wetting properties and the potential for biomimetic icephobicity of skunk cabbage Symplocarpus foetidus.
    Ramachandran R; Nosonovsky M
    Soft Matter; 2014 Oct; 10(39):7797-803. PubMed ID: 25144747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional imaging of mitochondria in saponin-permeabilized mice muscle fibers.
    Kuznetsov AV; Mayboroda O; Kunz D; Winkler K; Schubert W; Kunz WS
    J Cell Biol; 1998 Mar; 140(5):1091-9. PubMed ID: 9490722
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantification of the content of fluorescent flavoproteins in mitochondria from liver, kidney cortex, skeletal muscle, and brain.
    Kunz WS; Gellerich FN
    Biochem Med Metab Biol; 1993 Aug; 50(1):103-10. PubMed ID: 8373630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The intraflavin hydrogen bond in human electron transfer flavoprotein modulates redox potentials and may participate in electron transfer.
    Dwyer TM; Mortl S; Kemter K; Bacher A; Fauq A; Frerman FE
    Biochemistry; 1999 Jul; 38(30):9735-45. PubMed ID: 10423253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measurements of membrane potentials in plant mitochondria with the safranine method.
    Moore AL; Bonner WD
    Plant Physiol; 1982 Nov; 70(5):1271-6. PubMed ID: 16662666
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electron transport in mitochondria isolated from the flagellate Polytomella caeca.
    Lloyd D; Chance B
    Biochem J; 1968 May; 107(6):829-37. PubMed ID: 16742609
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reaction of electron-transfer flavoprotein ubiquinone oxidoreductase with the mitochondrial respiratory chain.
    Frerman FE
    Biochim Biophys Acta; 1987 Sep; 893(2):161-9. PubMed ID: 3620453
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectroscopic studies of flavoproteins and non-haem iron proteins of submitochondrial particles of Torulopsis utilis modified by iron- and sulphate-limited growth in continuous culture.
    Ragan CI; Garland PB
    Biochem J; 1971 Aug; 124(1):171-87. PubMed ID: 4399518
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorescence spectroscopic detection of mitochondrial flavoprotein redox oscillations and transient reduction of the NADPH oxidase-associated flavoprotein in leukocytes.
    Kindzelskii A; Petty HR
    Eur Biophys J; 2004 Jul; 33(4):291-9. PubMed ID: 14574524
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redox properties of electron-transferring flavoprotein from Megasphaera elsdenii.
    Pace CP; Stankovich MT
    Biochim Biophys Acta; 1987 Feb; 911(3):267-76. PubMed ID: 3814604
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energetics of beta-oxidation. Reduction potentials of general fatty acyl-CoA dehydrogenase, electron transfer flavoprotein, and fatty acyl-CoA substrates.
    Gustafson WG; Feinberg BA; McFarland JT
    J Biol Chem; 1986 Jun; 261(17):7733-41. PubMed ID: 3711105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.