These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 16657957)

  • 1. Gibberellin Substitution for the Requirement of the Cotyledons in Stem Elongation in Pisum sativum Seedlings.
    Shininger TL
    Plant Physiol; 1972 Mar; 49(3):341-4. PubMed ID: 16657957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological effects of cotyledons on gibberellin-induced cucumber hypocotyl elongation.
    Katsumi M; Kawamura N
    Plant Cell Physiol; 1980 Dec; 21(8):1439-48. PubMed ID: 25385960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mendel-200: Pea as a model system to analyze hormone-mediated stem elongation.
    Kutschera U; Khanna R
    Plant Signal Behav; 2023 Dec; 18(1):2207845. PubMed ID: 37166004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gibberellic Acid-Promoted Lignification and Phenylalanine Ammonia-lyase Activity in a Dwarf Pea (Pisum sativum).
    Cheng CK; Marsh HV
    Plant Physiol; 1968 Nov; 43(11):1755-9. PubMed ID: 16656968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The involvement of indole-3-acetic acid in the control of stem elongation in dark- and light-grown pea (Pisum sativum) seedlings.
    Sorce C; Picciarelli P; Calistri G; Lercari B; Ceccarelli N
    J Plant Physiol; 2008; 165(5):482-9. PubMed ID: 17706834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnitude and Kinetics of Stem Elongation Induced by Exogenous Indole-3-Acetic Acid in Intact Light-Grown Pea Seedlings.
    Yang T; Law DM; Davies PJ
    Plant Physiol; 1993 Jul; 102(3):717-724. PubMed ID: 12231860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Internode length in pisum: do the internode length genes effect growth in dark-grown plants?
    Reid JB
    Plant Physiol; 1983 Jul; 72(3):759-63. PubMed ID: 16663081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promotion by gibberellic Acid of polyamine biosynthesis in internodes of light-grown dwarf peas.
    Dai YR; Kaur-Sawhney R; Galston AW
    Plant Physiol; 1982 Jan; 69(1):103-6. PubMed ID: 16662137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sites of gibberellin biosynthesis in pea seedlings.
    Coolbaugh RC
    Plant Physiol; 1985 Jul; 78(3):655-7. PubMed ID: 16664302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diamine Oxidase in Cotyledons of Pisum sativum Develops as a Result of the Supply of Oxygen through the Embryonic Axis during Germination.
    Hirasawa E
    Plant Physiol; 1988 Oct; 88(2):441-3. PubMed ID: 16666323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of Internode Length in Pisum sativum (Further Evidence for the Involvement of Indole-3-Acetic Acid).
    McKay MJ; Ross JJ; Lawrence NL; Cramp RE; Beveridge CA; Reid JB
    Plant Physiol; 1994 Dec; 106(4):1521-1526. PubMed ID: 12232426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antagonistic regulation of the gibberellic acid response during stem growth in rice.
    Nagai K; Mori Y; Ishikawa S; Furuta T; Gamuyao R; Niimi Y; Hobo T; Fukuda M; Kojima M; Takebayashi Y; Fukushima A; Himuro Y; Kobayashi M; Ackley W; Hisano H; Sato K; Yoshida A; Wu J; Sakakibara H; Sato Y; Tsuji H; Akagi T; Ashikari M
    Nature; 2020 Aug; 584(7819):109-114. PubMed ID: 32669710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-controlled Stem Elongation in Pea Seedlings Grown under Varied Light Conditions.
    Elliott WM; Miller JH
    Plant Physiol; 1974 Feb; 53(2):279-83. PubMed ID: 16658691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative indole-3-acetic Acid levels in the slender pea and other pea phenotypes.
    Law DM; Davies PJ
    Plant Physiol; 1990 Aug; 93(4):1539-43. PubMed ID: 16667653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Kinetin, IAA, and Gibberellin on Ethylene Production, and Their Interactions in Growth of Seedlings.
    Fuchs Y; Lieberman M
    Plant Physiol; 1968 Dec; 43(12):2029-36. PubMed ID: 16657004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auxin Enhancement of mRNAs in Epidermis and Internal Tissues of the Pea Stem and Its Significance for Control of Elongation.
    Dietz A; Kutschera U; Ray PM
    Plant Physiol; 1990 Jun; 93(2):432-8. PubMed ID: 16667484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gibberellic-acid-induced cell elongation in pea epicotyls: Effect on polyploidy and DNA content.
    Boeken G; Van Oostveldt P
    Planta; 1977 Jan; 135(1):89-91. PubMed ID: 24419898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gibberellins in Relation to Flowering and Stem Elongation in the Long Day Plant Silene armeria.
    Cleland CF; Zeevaart JA
    Plant Physiol; 1970 Sep; 46(3):392-400. PubMed ID: 16657473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xyloglucan endotransglycosylase activity in pea internodes. Effects of applied gibberellic acid.
    Potter I; Fry SC
    Plant Physiol; 1993 Sep; 103(1):235-41. PubMed ID: 8208849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of Benzyladenine and Gibberellin A(1) from Roots in Relation to the Dominance between the Axillary Buds of Pea (Pisum sativum L.) Cotyledons.
    Procházka S; Jacobs WP
    Plant Physiol; 1984 Sep; 76(1):224-7. PubMed ID: 16663803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.