BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 16657987)

  • 1. Protein Synthesis in Cotyledons of Pisum sativum L: I. Changes in Cell-Free Amino Acid Incorporation Capacity during Seed Development and Maturation.
    Beevers L; Poulson R
    Plant Physiol; 1972 Apr; 49(4):476-81. PubMed ID: 16657987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Influence of Axis Removal on Protein Metabolism in Cotyledons of Pisum sativum L.
    Chin TY; Poulson R; Beevers L
    Plant Physiol; 1972 Apr; 49(4):482-9. PubMed ID: 16657988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maternal genotype influences pea seed size by controlling both mitotic activity during early embryogenesis and final endoreduplication level/cotyledon cell size in mature seed.
    Lemontey C; Mousset-Déclas C; Munier-Jolain N; Boutin JP
    J Exp Bot; 2000 Feb; 51(343):167-75. PubMed ID: 10938823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seed germination studies. 3. Properties of a cell-free amino acid incorporating system from pea cotyledons; possible origin of cotyledonary alpha-amylase.
    Swain RR; Dekker EE
    Plant Physiol; 1969 Mar; 44(3):319-25. PubMed ID: 5775202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of storage-protein synthesis during seed development in pea (Pisum sativum L.).
    Gatehouse JA; Evans IM; Bown D; Croy RR; Boulter D
    Biochem J; 1982 Oct; 208(1):119-27. PubMed ID: 6897609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased capacity for sucrose uptake leads to earlier onset of protein accumulation in developing pea seeds.
    Rosche EG; Blackmore D; Offler CE; Patrick JW
    Funct Plant Biol; 2005 Nov; 32(11):997-1007. PubMed ID: 32689195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-free Synthesis of Pea Seed Proteins.
    Higgins TJ; Spencer D
    Plant Physiol; 1977 Nov; 60(5):655-61. PubMed ID: 16660158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycoprotein Metabolism in the Cotyledons of Pisum sativum during Development and Germination.
    Basha SM; Beevers L
    Plant Physiol; 1976 Jan; 57(1):93-7. PubMed ID: 16659433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of the increase in cytochrome c oxidase activity in pea cotyledons during seed hydration. The presence of free cytochrome-c-oxidase subunits in dry cotyledons and their probable assembly into the holoenzyme during seed hydration.
    Matsuoka M; Asahi T
    Eur J Biochem; 1983 Aug; 134(2):223-9. PubMed ID: 6307687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental Changes in the Free Amino Acid Pool and Total Protein Amino Acids of Pea Cotyledons (Pisum sativum L.).
    Macnicol PK
    Plant Physiol; 1983 Jun; 72(2):492-7. PubMed ID: 16663030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The rough endoplasmic reticulum is the site of reserve-protein synthesis in developing Phaseolus vulgaris cotyledons.
    Bollini R; Chrispeels MJ
    Planta; 1979 Sep; 146(4):487-501. PubMed ID: 24318258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cycloheximide, D-threo-chloramphenicol, erythromycin and actinomycin D on De-novo synthesis of cytoplasmic and mitochondrial proteins in the cotyledons of germinating pea seeds.
    Malhotra SS; Solomos T; Spencer M
    Planta; 1973 Jun; 114(2):169-84. PubMed ID: 24458721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyribosomes from Peas: VI. Auxin-stimulated Recruitment of Free Monosomes into Membrane-bound Polysomes.
    Davies E
    Plant Physiol; 1976 Apr; 57(4):516-8. PubMed ID: 16659517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of 6-benzylaminopurine on (14C)leucine incorporation into protein in a cell-free system from isolated squash cotyledons].
    Iakovieva LA; Kliachko NL; Kulaeva ON
    Mol Biol (Mosk); 1977; 11(4):868-76. PubMed ID: 618329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of the formation of amylases and proteases in the cotyledons of germinating peas.
    Yomo H; Varner JE
    Plant Physiol; 1973 Apr; 51(4):708-13. PubMed ID: 16658396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The families of papain- and legumain-like cysteine proteinases from embryonic axes and cotyledons of Vicia seeds: developmental patterns, intracellular localization and functions in globulin proteolysis.
    Fischer J; Becker C; Hillmer S; Horstmann C; Neubohn B; Schlereth A; Senyuk V; Shutov A; Müntz K
    Plant Mol Biol; 2000 May; 43(1):83-101. PubMed ID: 10949376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA metabolism and membrane-bound polysomes in relation to globulin biosynthesis in cotyledons of developing field beans (Vicia faba L.).
    Püchel M; Müntz K; Parthier B; Aurich O; Bassüner R; Manteuffel R; Schmidt P
    Eur J Biochem; 1979 May; 96(2):321-9. PubMed ID: 456377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbamoyl phosphate synthetase activity from the cotyledons of developing and germinating pea seeds.
    Kollöffel C; Verkerk BC
    Plant Physiol; 1982 Jan; 69(1):143-5. PubMed ID: 16662147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of Gibberellin A(12) and A(12)-Aldehyde in Developing Seeds of Pisum sativum L.
    Zhu YX; Davies PJ; Halinska A
    Plant Physiol; 1991 Sep; 97(1):26-33. PubMed ID: 16668380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photochemical activity changes accompanying the embryogenesis of pea (Pisum sativum) with yellow and green cotyledons.
    Smolikova G; Kreslavski V; Shiroglazova O; Bilova T; Sharova E; Frolov A; Medvedev S
    Funct Plant Biol; 2018 Jan; 45(2):228-235. PubMed ID: 32291037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.