These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 16658074)

  • 1. Interaction of carbon dioxide and ethylene in overcoming thermodormancy of lettuce seeds.
    Negm FB; Smith OE; Kumamoto J
    Plant Physiol; 1972 Jun; 49(6):869-72. PubMed ID: 16658074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Gibberellic Acid, Kinetin, and Ethylene plus Carbon Dioxide on the Thermodormancy of Lettuce Seed (Lactuca sativa L. cv. Mesa 659).
    Keys RD; Smith OE; Kumamoto J; Lyon JL
    Plant Physiol; 1975 Dec; 56(6):826-9. PubMed ID: 16659403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of phytochrome in an interaction with ethylene and carbon dioxide in overcoming lettuce seed thermodormancy.
    Negm FB; Smith OE; Kumamoto J
    Plant Physiol; 1973 Jun; 51(6):1089-94. PubMed ID: 16658472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of seed priming in circumventing thermodormancy in lettuce.
    Cantliffe DJ; Fischer JM; Nell TA
    Plant Physiol; 1984 Jun; 75(2):290-4. PubMed ID: 16663613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abscisic acid as an endogenous component in lettuce fruits, Lactuca sativa L. cv. Grand Rapids. Does it control thermodormancy?
    Berrie AM; Robertson J
    Planta; 1976 Jan; 131(3):211-5. PubMed ID: 24424821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethylene synthesis in lettuce seeds: its physiological significance.
    Burdett AN
    Plant Physiol; 1972 Dec; 50(6):719-22. PubMed ID: 16658250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds.
    Chiwocha SD; Abrams SR; Ambrose SJ; Cutler AJ; Loewen M; Ross AR; Kermode AR
    Plant J; 2003 Aug; 35(3):405-17. PubMed ID: 12887591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversal of induced dormancy in lettuce by ethylene, kinetin, and gibberellic Acid.
    Dunlap JR; Morgan PW
    Plant Physiol; 1977 Aug; 60(2):222-4. PubMed ID: 16660064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Requirement for Ethylene Synthesis and Action during Relief of Thermoinhibition of Lettuce Seed Germination by Combinations of Gibberellic Acid, Kinetin, and Carbon Dioxide.
    Saini HS; Consolacion ED; Bassi PK; Spencer MS
    Plant Physiol; 1986 Aug; 81(4):950-3. PubMed ID: 16664963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antagonistic effects of high and low temperature pretreatments on the germination and pregermination ethylene synthesis of lettuce seeds.
    Burdett AN
    Plant Physiol; 1972 Aug; 50(2):201-4. PubMed ID: 16658141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation of lettuce seed germination by ethylene.
    Abeles FB; Lonski J
    Plant Physiol; 1969 Feb; 44(2):277-80. PubMed ID: 16657056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of ethylene and carbon dioxide on the germination of osmotically inhibited lettuce seed.
    Negm FB; Smith OE
    Plant Physiol; 1978 Oct; 62(4):473-6. PubMed ID: 16660541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The involvement of indole acetic acid in the thermodormancy of lettuce fruits, Lactuca sativa cv. Grand Rapids.
    Robertson J; Hillman JR; Berrie AM
    Planta; 1976 Jan; 131(3):309-13. PubMed ID: 24424836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative Phosphorylation in Germinating Lettuce Seeds (Lactuca sativa) during the First Hours of Imbibition.
    Hourmant A; Pradet A
    Plant Physiol; 1981 Sep; 68(3):631-5. PubMed ID: 16661970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic analysis of lettuce seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by polyethylene glycol fractionation.
    Wang WQ; Song BY; Deng ZJ; Wang Y; Liu SJ; Møller IM; Song SQ
    Plant Physiol; 2015 Apr; 167(4):1332-50. PubMed ID: 25736209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Germination-promoting Substances Given in Conjunction with Red Light on the Phytochrome-mediated Germination of Dormant Lettuce Seeds (Lactuca sativa L.).
    Speer HL; Hsiao AI; Vidaver W
    Plant Physiol; 1974 Dec; 54(6):852-4. PubMed ID: 16658988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic Variation for Thermotolerance in Lettuce Seed Germination Is Associated with Temperature-Sensitive Regulation of ETHYLENE RESPONSE FACTOR1 (ERF1).
    Yoong FY; O'Brien LK; Truco MJ; Huo H; Sideman R; Hayes R; Michelmore RW; Bradford KJ
    Plant Physiol; 2016 Jan; 170(1):472-88. PubMed ID: 26574598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trace gases generated in closed plant cultivation systems and their effects on plant growth.
    Tani A; Kiyota M; Aiga I
    Biol Sci Space; 1995 Dec; 9(4):314-26. PubMed ID: 11541892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetin Enhanced 1-Aminocyclopropane-1-Carboxylic Acid Utilization during Alleviation of High Temperatures Stress in Lettuce Seeds.
    Khan AA; Prusinski J
    Plant Physiol; 1989 Oct; 91(2):733-7. PubMed ID: 16667094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethylene reduces gas exchange and growth of lettuce plants under hypobaric and normal atmospheric conditions.
    He C; Davies FT; Lacey RE
    Physiol Plant; 2009 Mar; 135(3):258-71. PubMed ID: 19175518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.