These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 16658126)

  • 1. Light-stimulated Production of a Chloroplast-localized System for Protein Synthesis in Euglena gracilis.
    Reger BJ; Smillie RM; Fuller RC
    Plant Physiol; 1972 Jul; 50(1):24-7. PubMed ID: 16658126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and Turnover of Proteins in Proplastids and Chloroplasts of Euglena gracilis.
    Cushman JC; Price CA
    Plant Physiol; 1986 Dec; 82(4):972-7. PubMed ID: 16665176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on S-adenosylmethionine-magnesium protoporphyrin methyltransferase in Euglena gracilis strain Z.
    Ebbon JG; Tait GH
    Biochem J; 1969 Feb; 111(4):573-82. PubMed ID: 5774480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A possible ribosomal-directed regulatory system in Euglena gracilis. Chlorophyll synthesis.
    Perl M
    Biochem J; 1972 Dec; 130(3):813-8. PubMed ID: 4198358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of chloramphenicol and cycloheximide on lipid synthesis during chloroplast development in Euglena gracilis.
    Bishop DG; Smillie RM
    Arch Biochem Biophys; 1970 Jul; 139(1):179-89. PubMed ID: 5471246
    [No Abstract]   [Full Text] [Related]  

  • 6. Synthetic abilities of Euglena chloroplasts in darkness.
    Gómez-Silva B; Schiff JA
    Biochim Biophys Acta; 1985 Aug; 808(3):448-54. PubMed ID: 3925991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homologous and heterologous reconstitution of Golgi to chloroplast transport and protein import into the complex chloroplasts of Euglena.
    Sláviková S; Vacula R; Fang Z; Ehara T; Osafune T; Schwartzbach SD
    J Cell Sci; 2005 Apr; 118(Pt 8):1651-61. PubMed ID: 15797929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic Responses of Dark-Adapted
    Chen Z; Chen Z; Zhu J; He J; Liu Q; Zhu H; Lei A; Wang J
    Front Bioeng Biotechnol; 2022; 10():843414. PubMed ID: 35309998
    [No Abstract]   [Full Text] [Related]  

  • 9. The effect of glucose on the biochemical and ultrastructural characteristics of developing Euglena chloroplasts.
    Schwelitz FD; Cisneros PL; Jagielo JA
    J Protozool; 1978 Aug; 25(3 Pt 2):398-403. PubMed ID: 102787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of active polyribosomes from the cytoplasm, mitochondria and chloroplasts of Euglena gracilis.
    Avadhani NG; Buetow DE
    Biochem J; 1972 Jun; 128(2):353-65. PubMed ID: 4628528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of chloroplast formation in Euglena gracilis. Antagonism between carbon and nitrogen sources.
    Harris RC; Kirk JT
    Biochem J; 1969 Jun; 113(1):195-205. PubMed ID: 5806391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. THE INCORPORATION OF AMINO ACIDS INTO THE PROTEIN OF CHLOROPLASTS AND CHLOROPLAST RIBOSOMES OF EUGLENA GRACILIS.
    EISENSTADT J; BRAWERMAN G
    Biochim Biophys Acta; 1963 Oct; 76():319-21. PubMed ID: 14097390
    [No Abstract]   [Full Text] [Related]  

  • 13. Nature, intracellular distribution and formation of terpenoid quinones in Euglena gracilis.
    Threlfall DR; Goodwin TW
    Biochem J; 1967 May; 103(2):573-88. PubMed ID: 5340369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytoplasmic regulation of chloroplast translation in Euglena gracilis.
    Reardon EM; Price CA
    Arch Biochem Biophys; 1983 Oct; 226(2):433-40. PubMed ID: 6416175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of light-dependent RNA metabolism in wild-type Euglena with that of mutants impaired for chloroplast development.
    Zeldin MH; Schiff JA
    Planta; 1968 Mar; 81(1):1-15. PubMed ID: 24519592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the dependence of chlorophyll synthesis on protein synthesis in Euglena gracilis, together with a nomogram for determination of chlorophyll concentration.
    Kirk JT
    Planta; 1967 Jun; 78(2):200-7. PubMed ID: 24522710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlorophyll biosynthesis from glutamate or 5-aminolevulinate in intact Euglena chloroplasts.
    Gomez-Silva B; Timko MP; Schiff JA
    Planta; 1985 Jul; 165(1):12-22. PubMed ID: 24240952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Events surrounding the early development of Euglena chloroplasts. 16. Plastid thylakoid polypeptides during greening.
    Bingham S; Schiff JA
    Biochim Biophys Acta; 1979 Sep; 547(3):531-43. PubMed ID: 114219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on Chloroplast Development and Replication in Euglena: III. A Study of the Site of Synthesis of Alkaline Deoxyribonuclease Induced during Chloroplast Development in Euglena gracilis.
    Egan JM; Carell EF
    Plant Physiol; 1972 Sep; 50(3):391-5. PubMed ID: 16658181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribulose 1,5-Diphosphate Carboxylase Synthesis in Euglena: II. Effect of Inhibitors on Enzyme Synthesis during Regreening and Subsequent Transfer to Darkness.
    Lord JM; Armitage TL; Merrett MJ
    Plant Physiol; 1975 Nov; 56(5):600-4. PubMed ID: 16659352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.