These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 16658195)

  • 1. Photoregulation of Nicotinamide Adenine Dinucleotide Kinase Activity in Cell-free Extracts.
    Tezuka T; Yamamoto Y
    Plant Physiol; 1972 Oct; 50(4):458-62. PubMed ID: 16658195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of Activation of Nicotinamide Adenine Dinucleotide Kinase by Phytochrome-Far Red-absorbing Form.
    Tezuka T
    Plant Physiol; 1974 May; 53(5):717-22. PubMed ID: 16658776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of cyclic GMP in phytochrome-controlled flowering of Pharbitis nil.
    Szmidt-Jaworska A; Jaworski K; Kopcewicz J
    J Plant Physiol; 2008 May; 165(8):858-67. PubMed ID: 17913286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light requirement, phytochrome and photoperiodic induction of flowering of Pharbitis nil Chois : III. A comparison of spectrophotometric and physiological assay of phytochrome transformation during induction.
    King RW; Vince-Prue D; Quail PH
    Planta; 1978 Jan; 141(1):15-22. PubMed ID: 24414626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination between the red- and far-red-absorbing forms of phytochrome from Avena sativa L. by monoclonal antibodies.
    Thomas B; Penn SE; Butcher GW; Galfre G
    Planta; 1984 Mar; 160(4):382-4. PubMed ID: 24258587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-induced conversion of nicotinamide adenine dinucleotide to nicotinamide adenine dinucleotide phosphate in higher plant leaves.
    Muto S; Miyachi S
    Plant Physiol; 1981 Aug; 68(2):324-8. PubMed ID: 16661910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkyl and omega-amino alkyl agaroses as probes of light-induced changes in phytochrome from pea seedlings (Pisum sativum cv. Alaska).
    Yamamoto KT; Smith WO
    Biochim Biophys Acta; 1981 Mar; 668(1):27-34. PubMed ID: 7236707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular localisation of phytochrome in oat coleoptiles by electron microscopy : Dependence on light pretreatments and the amount of the active, far-red-absorbing form.
    Hofmann E; Speth V; Schäfer E
    Planta; 1990 Feb; 180(3):372-7. PubMed ID: 24202016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoactivation of NAD Kinase through Phytochrome: Phosphate Donors and Cofactors.
    Tezuka T; Yamamoto Y
    Plant Physiol; 1975 Dec; 56(6):728-30. PubMed ID: 16659381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-function studies on phytochrome. Preliminary characterization of highly purified phytochrome from Avena sativa enriched in the 124-kilodalton species.
    Litts JC; Kelly JM; Lagarias JC
    J Biol Chem; 1983 Sep; 258(18):11025-31. PubMed ID: 6885811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aspects of phytochrome decay in etiolated seedlings under continuous Illumination.
    Kendrick RE
    Planta; 1972 Dec; 102(4):286-93. PubMed ID: 24482270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocontrol of stem elongation in light-grown plants of Fuchsia hybrida.
    Vince-Prue D
    Planta; 1977 Jan; 133(2):149-56. PubMed ID: 24425218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light requirement, phytochrome and photoperiodic induction of flowering of Pharbits nil Chois : II. A critical examination of spectrophotometric assays of phytochrome transformations.
    Vince-Prue D; King RW; Quail PH
    Planta; 1978 Jan; 141(1):9-14. PubMed ID: 24414625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Red light and auxin effects on rubidium uptake by oat coleoptile and pea epicotyl segments.
    Pike CS; Richardson AE
    Plant Physiol; 1979 Jan; 63(1):139-41. PubMed ID: 16660665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of a clock-regulated transcript during flower-inductive darkness in pharbitis nil.
    Sage-Ono K; Ono M; Harada H; Kamada H
    Plant Physiol; 1998 Apr; 116(4):1479-85. PubMed ID: 9536066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytochrome regulation of phytochrome A mRNA levels in the model short-day-plant Pharbitis nil.
    Carter CE; Szmidt-Jaworska A; Hughes M; Thomas B; Jackson S
    J Exp Bot; 2000 Apr; 51(345):703-11. PubMed ID: 10938862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo phytochrome reversion in immature tissue of the alaska pea seedling.
    McArthur JA; Briggs WR
    Plant Physiol; 1971 Jul; 48(1):46-9. PubMed ID: 16657731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytochrome control of multiple transcripts of the phytochrome gene in Pisum sativum.
    Tomizawa K; Sato N; Furuya M
    Plant Mol Biol; 1989 Mar; 12(3):295-9. PubMed ID: 24272864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Semidian Rhythm in the Flowering Response of Pharbitis nil to Far-Red Light: II. The Involvement of Phytochrome.
    Evans LT; Heide OM; King RW
    Plant Physiol; 1986 Apr; 80(4):1025-9. PubMed ID: 16664712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of Avena phytochrome in vitro as a probe of light-induced conformational changes.
    Wong YS; Cheng HC; Walsh DA; Lagarias JC
    J Biol Chem; 1986 Sep; 261(26):12089-97. PubMed ID: 3745179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.