These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16658251)

  • 1. Induction of indoleacetic Acid synthetases in tobacco pith explants.
    Cheng TY
    Plant Physiol; 1972 Dec; 50(6):723-7. PubMed ID: 16658251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological Comparisons of Pith Callus With Crown-Gall and Genetic Tumors of Nicotiana glauca, N. langsdorffii, and N. glauca-langsdorffii Grown in Vitro. II. Nutritional Physiology.
    Sharp WR; Gunckel JE
    Plant Physiol; 1969 Jul; 44(7):1073-9. PubMed ID: 16657160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of genomes on autonomous growth of pith cultures of Nicotiana glauca-Langsdorffii hybrids.
    Cheng TY; Smith HH
    Planta; 1973 Mar; 113(1):29-34. PubMed ID: 24468843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indole-3-acetic Acid Synthesis in Tumorous and Nontumorous Species of Nicotiana.
    Liu ST; Katz CD; Knight CA
    Plant Physiol; 1978 May; 61(5):743-7. PubMed ID: 16660376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gibberellin-mediated synergism of xylogenesis in lettuce pith cultures.
    Pearce D; Miller AR; Roberts LW; Pharis RP
    Plant Physiol; 1987 Aug; 84(4):1121-5. PubMed ID: 16665571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytokinin effects on growth of quiescent tobacco pith cells.
    Hagen GL; Marcus A
    Plant Physiol; 1975 Jan; 55(1):90-3. PubMed ID: 16659036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of tobacco pith nucleic to growth substances.
    Gifford EM; Nitsch JP
    Planta; 1969 Mar; 85(1):1-10. PubMed ID: 24515552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indole-3-butyric acid promotes adventitious rooting in Arabidopsis thaliana thin cell layers by conversion into indole-3-acetic acid and stimulation of anthranilate synthase activity.
    Fattorini L; Veloccia A; Della Rovere F; D'Angeli S; Falasca G; Altamura MM
    BMC Plant Biol; 2017 Jul; 17(1):121. PubMed ID: 28693423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bound Form Indole-3-acetic Acid Synthesis in Tumorous and Nontumorous Species of Nicotiana.
    Liu ST; Gruenert D; Knight CA
    Plant Physiol; 1978 Jan; 61(1):50-3. PubMed ID: 16660235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Azido auxins: synthesis and biological activity of fluorescent photoaffinity labeling agents.
    Melhado LL; Jones AM; Leonard NJ; Vanderhoef LN
    Plant Physiol; 1981 Aug; 68(2):469-75. PubMed ID: 16661939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM.
    Apine OA; Jadhav JP
    J Appl Microbiol; 2011 May; 110(5):1235-44. PubMed ID: 21332896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological Comparisons of Pith Callus With Crown-Gall and Genetic Tumors of Nicotiana glauca, N. langsdorffii, and N. glauca-langsdorffii Grown in Vitro. I. Tumor Induction and Proliferation.
    Sharp WR; Gunckel JE
    Plant Physiol; 1969 Jul; 44(7):1069-72. PubMed ID: 16657159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of plant hormones in higher plant cellular differentiation. II. Experiments with the vascular cambium, and sclereid and tracheid differentiation in the pine, Pinus contorta.
    Savidge RA
    Histochem J; 1983 May; 15(5):447-66. PubMed ID: 6223902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relative importance of tryptophan-dependent and tryptophan-independent biosynthesis of indole-3-acetic acid in tobacco during vegetative growth.
    Sitbon F; Astot C; Edlund A; Crozier A; Sandberg G
    Planta; 2000 Oct; 211(5):715-21. PubMed ID: 11089685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thin-layer chromatography of auxin and inhibitors in Nicotiana glauca, N. langsdorffii and three of their tumor-forming hybrids.
    Bayer MH
    Planta; 1967 Dec; 72(4):329-37. PubMed ID: 24554326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indole-3-acetic acid (IAA) synthesis in the biocontrol strain CHA0 of Pseudomonas fluorescens: role of tryptophan side chain oxidase.
    Oberhänsli T; Dfago G; Haas D
    J Gen Microbiol; 1991 Oct; 137(10):2273-9. PubMed ID: 1663150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel tryptophan metabolic pathways in auxin biosynthesis in silkworm.
    Yokoyama C; Takei M; Kouzuma Y; Nagata S; Suzuki Y
    J Insect Physiol; 2017 Aug; 101():91-96. PubMed ID: 28733236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation in Indole-3-Acetic Acid Production by Wild Saccharomyces cerevisiae and S. paradoxus Strains from Diverse Ecological Sources and Its Effect on Growth.
    Liu YY; Chen HW; Chou JY
    PLoS One; 2016; 11(8):e0160524. PubMed ID: 27483373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A specific radioimmunoassay for nanogram quantities of the auxin, indole-3-acetic acid.
    Pengelly W; Meins F
    Planta; 1977 Jan; 136(2):173-80. PubMed ID: 24420324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variation in nicotine content of tobacco callus cultures.
    Kinnersley AM; Dougall DK
    Planta; 1982 Sep; 154(5):447-53. PubMed ID: 24276273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.