BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 16658267)

  • 41. Fundamental differences in starch synthesis in the maize leaf, embryo, ovary and endosperm.
    Boehlein SK; Shaw JR; Boehlein TJ; Boehlein EC; Hannah LC
    Plant J; 2018 Nov; 96(3):595-606. PubMed ID: 30062763
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Re-programming of gene expression in the CS8 rice line over-expressing ADPglucose pyrophosphorylase induces a suppressor of starch biosynthesis.
    Cakir B; Tian L; Crofts N; Chou HL; Koper K; Ng CY; Tuncel A; Gargouri M; Hwang SK; Fujita N; Okita TW
    Plant J; 2019 Mar; 97(6):1073-1088. PubMed ID: 30523657
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spinach Leaf Intra and Extra Chloroplast Phosphorylase Activities during Growth.
    Hammond JB; Preiss J
    Plant Physiol; 1983 Nov; 73(3):709-12. PubMed ID: 16663287
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of wild type, shrunken-1 and shrunken-2 maize kernels grown in vitro.
    Cobb BG; Hannah LC
    Theor Appl Genet; 1983 Apr; 65(1):47-51. PubMed ID: 24263200
    [TBL] [Abstract][Full Text] [Related]  

  • 45. ADPglucose Pyrophosphorylase from the CAM Plants Hoya carnosa and Xerosicyos danguyi.
    Singh BK; Greenberg E; Preiss J
    Plant Physiol; 1984 Mar; 74(3):711-6. PubMed ID: 16663486
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparative susceptibility of starch granules of double- and triple-mutants containing amylose-extender, waxy, sugary-1, sugary-2 and dull genes of maize inbred OH43 (Zea mays L.) to amylase.
    Fuwa H; Glover DV; Sugimoto Y
    J Nutr Sci Vitaminol (Tokyo); 1979; 25(2):103-14. PubMed ID: 383915
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [The effect of phospholipids on starch metabolism].
    Vieweg GH; de Fekete MA
    Planta; 1976 Jan; 129(2):155-9. PubMed ID: 24430907
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inhibition of potato starch phosphorylase by alpha-D-glucopyranose-1,2-cyclic phosphate.
    Kokesh FC; Stephenson RK; Kakuda Y
    Biochim Biophys Acta; 1977 Aug; 483(2):258-62. PubMed ID: 889837
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize.
    Doehlert DC; Kuo TM; Felker FC
    Plant Physiol; 1988 Apr; 86(4):1013-9. PubMed ID: 16666024
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of high-intensity ultrasound irradiation on the stability and structural features of coconut-grain milk composite systems utilizing maize kernels and starch with different amylose contents.
    Lu X; Chen J; Zheng M; Guo J; Qi J; Chen Y; Miao S; Zheng B
    Ultrason Sonochem; 2019 Jul; 55():135-148. PubMed ID: 30853534
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Immunocytochemical Localization of ADPglucose Pyrophosphorylase in Developing Potato Tuber Cells.
    Kim WT; Franceschi VR; Okita TW; Robinson NL; Morell M; Preiss J
    Plant Physiol; 1989 Sep; 91(1):217-20. PubMed ID: 16666999
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enzymes of starch metabolism in the developing rice grain.
    Baun LC; Palmiano EP; Perez CM; Juliano BO
    Plant Physiol; 1970 Sep; 46(3):429-34. PubMed ID: 16657480
    [TBL] [Abstract][Full Text] [Related]  

  • 53. THE SYNTHESIS OF THE STARCH GRANULE.
    Smith AM; Denyer K; Martin C
    Annu Rev Plant Physiol Plant Mol Biol; 1997 Jun; 48():67-87. PubMed ID: 15012257
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heat stress during grain filling affects activities of enzymes involved in grain protein and starch synthesis in waxy maize.
    Yang H; Gu X; Ding M; Lu W; Lu D
    Sci Rep; 2018 Oct; 8(1):15665. PubMed ID: 30353095
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [On the activity of synthetase and phosphorylase in maize leaves at different starch levels].
    de Fekete MA; Vieweg GH
    Planta; 1974 Mar; 117(1):83-91. PubMed ID: 24458302
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phosphorylase and Q-enzyme in developing maize kernels.
    FUWA H
    Arch Biochem Biophys; 1957 Jul; 70(1):157-68. PubMed ID: 13445251
    [No Abstract]   [Full Text] [Related]  

  • 57. Effect of calcium and magnesium on starch synthesis in maize kernels and its physiological driving mechanism.
    He Z; Shang X; Zhang T; Yun J
    Front Plant Sci; 2023; 14():1332517. PubMed ID: 38259946
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Physicochemical, pasting, crystallinity, and morphological properties of starches isolated from maize kernels exhibiting different types of defects.
    Paraginski RT; Colussi R; Dias ARG; da Rosa Zavareze E; Elias MC; Vanier NL
    Food Chem; 2019 Feb; 274():330-336. PubMed ID: 30372947
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of soluble starch synthases and branching enzymes from leaves and kernels of normal and amylose-extender maize.
    Dang PL; Boyer CD
    Biochem Genet; 1989 Oct; 27(9-10):521-32. PubMed ID: 2533497
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Free sugar fraction of the amylose-related mutants of maize.
    Gentinetta E; Salamini F
    Biochem Genet; 1979 Jun; 17(5-6):405-14. PubMed ID: 518532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.