These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 16658318)

  • 1. A red-far red reversible effect on uptake of exogenous indoleacetic Acid in etiolated rice coleoptiles.
    Sherwin JE; Furuya M
    Plant Physiol; 1973 Feb; 51(2):295-8. PubMed ID: 16658318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Red light and auxin effects on rubidium uptake by oat coleoptile and pea epicotyl segments.
    Pike CS; Richardson AE
    Plant Physiol; 1979 Jan; 63(1):139-41. PubMed ID: 16660665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytochrome Action in Oryza sativa L: IV. Red and Far Red Reversible Effect on the Production of Ethylene in Excised Coleoptiles.
    Imaseki H; Pjon CJ; Furuya M
    Plant Physiol; 1971 Sep; 48(3):241-4. PubMed ID: 16657772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of red light on coleoptile growth.
    Muir RM; Chang KC
    Plant Physiol; 1974 Sep; 54(3):286-8. PubMed ID: 16658875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytochrome action in Oryza sativa L. : II. The spectrophotometric versus the physiological status of phytochrome in coleoptiles.
    Pjon CJ; Furuya M
    Planta; 1968 Dec; 81(4):303-13. PubMed ID: 24519726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Action of red light on indole-3-acetic-acid status and growth in coleoptiles of etiolated maize seedlings.
    Iino M
    Planta; 1982 Nov; 156(1):21-32. PubMed ID: 24272212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auxin Transport in Zea mays Coleoptiles II. Influence of Light on the Transport of Indoleacetic Acid-2-C.
    Naqvi SM; Gordon SA
    Plant Physiol; 1967 Jan; 42(1):138-43. PubMed ID: 16656477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytochrome action in Oryza sativa L. : V. Effects of decapitation and red and far-red light on cell wall extensibility.
    Masuda Y; Pjon CJ; Furuya M
    Planta; 1970 Sep; 90(3):236-42. PubMed ID: 24499836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Red light causes a reduction in IAA levels at the apical tip by inhibiting de novo biosynthesis from tryptophan in maize coleoptiles.
    Nishimura T; Mori Y; Furukawa T; Kadota A; Koshiba T
    Planta; 2006 Nov; 224(6):1427-35. PubMed ID: 16741747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhythmicity in the Basipetal Transport of Indoleacetic Acid through Coleoptiles.
    Shen-Miller J
    Plant Physiol; 1973 Apr; 51(4):615-9. PubMed ID: 16658381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The physiological versus the spectrophotometric status of phytochrome in corn coleoptiles.
    Briggs WR; Chon HP
    Plant Physiol; 1966 Sep; 41(7):1159-66. PubMed ID: 16656379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of red light on the growth of intact wheat and barley coleoptiles.
    Lawson VR; Weintraub RL
    Plant Physiol; 1975 Jul; 56(1):44-50. PubMed ID: 16659255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photomorphogenesis of rice seedlings: a mutant impaired in phytochrome-mediated inhibition of coleoptile growth.
    Biswas KK; Neumann R; Haga K; Yatoh O; Iino M
    Plant Cell Physiol; 2003 Mar; 44(3):242-54. PubMed ID: 12668770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exogenous auxin enhances the degradation of a light down-regulated and nuclear-localized OsiIAA1, an Aux/IAA protein from rice, via proteasome.
    Thakur JK; Jain M; Tyagi AK; Khurana JP
    Biochim Biophys Acta; 2005 Sep; 1730(3):196-205. PubMed ID: 16139905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Movement of indoleacetic acid in coleoptiles of Avena sativa L. II. Suspension of polarity by total inhibition of the basipetal transport.
    Goldsmith MH
    Plant Physiol; 1966 Jan; 41(1):15-27. PubMed ID: 5904589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytochrome Control of Another Phytochrome-mediated Process.
    Tanada T
    Plant Physiol; 1972 Apr; 49(4):560-2. PubMed ID: 16658001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel receptor kinase involved in jasmonate-mediated wound and phytochrome signaling in maize coleoptiles.
    He G; Tarui Y; Iino M
    Plant Cell Physiol; 2005 Jun; 46(6):870-83. PubMed ID: 15829513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhythmic Differences in the Basipetal Movement of Indoleacetic Acid between Separated Upper and Lower Halves of Geotropically Stimulated Corn Coleoptiles.
    Shen-Miller J
    Plant Physiol; 1973 Aug; 52(2):166-70. PubMed ID: 16658520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of microtubule disorganizers, plant hormones, and red light in wheat coleoptile segment growth.
    Lawson VR; Weintraub RL
    Plant Physiol; 1975 Jun; 55(6):1062-6. PubMed ID: 16659210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoreversible calcium fluxes induced by phytochrome in oat coleoptile cells.
    Hale CC; Roux SJ
    Plant Physiol; 1980 Apr; 65(4):658-62. PubMed ID: 16661257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.