BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 1665838)

  • 1. Hydroxyl radical formation from the auto-reduction of a ferric citrate complex.
    Gutteridge JM
    Free Radic Biol Med; 1991; 11(4):401-6. PubMed ID: 1665838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superoxide dismutase and Fenton chemistry. Reaction of ferric-EDTA complex and ferric-bipyridyl complex with hydrogen peroxide without the apparent formation of iron(II).
    Gutteridge JM; Maidt L; Poyer L
    Biochem J; 1990 Jul; 269(1):169-74. PubMed ID: 2165392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superoxide-dependent formation of hydroxyl radicals from ferric-complexes and hydrogen peroxide: an evaluation of fourteen iron chelators.
    Gutteridge JM
    Free Radic Res Commun; 1990; 9(2):119-25. PubMed ID: 2161386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors that influence the deoxyribose oxidation assay for Fenton reaction products.
    Winterbourn CC
    Free Radic Biol Med; 1991; 11(4):353-60. PubMed ID: 1665835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ADP-iron as a Fenton reactant: radical reactions detected by spin trapping, hydrogen abstraction, and aromatic hydroxylation.
    Gutteridge JM; Nagy I; Maidt L; Floyd RA
    Arch Biochem Biophys; 1990 Mar; 277(2):422-8. PubMed ID: 2155582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactivity of hydroxyl and hydroxyl-like radicals discriminated by release of thiobarbituric acid-reactive material from deoxy sugars, nucleosides and benzoate.
    Gutteridge JM
    Biochem J; 1984 Dec; 224(3):761-7. PubMed ID: 6098266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferrous ion formation by ferrioxamine prepared from aged desferrioxamine: a potential prooxidant property.
    Gutteridge JM; Quinlan GJ; Swain J; Cox J
    Free Radic Biol Med; 1994 Jun; 16(6):733-9. PubMed ID: 8070676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide.
    Hogg N; Darley-Usmar VM; Wilson MT; Moncada S
    Biochem J; 1992 Jan; 281 ( Pt 2)(Pt 2):419-24. PubMed ID: 1310595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of pH on OH. scavenger inhibition of damage to deoxyribose by Fenton reaction.
    Tadolini B; Cabrini L
    Mol Cell Biochem; 1990 May; 94(2):97-104. PubMed ID: 2165214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of the Fenton reaction by the protein caeruloplasmin and other copper complexes. Assessment of ferroxidase and radical scavenging activities.
    Gutteridge JM
    Chem Biol Interact; 1985 Dec; 56(1):113-20. PubMed ID: 3000633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radical-driven Fenton reactions: studies with paraquat, adriamycin, and anthraquinone 6-sulfonate and citrate, ATP, ADP, and pyrophosphate iron chelates.
    Vile GF; Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1987 Dec; 259(2):616-26. PubMed ID: 2827582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferrous-salt-promoted damage to deoxyribose and benzoate. The increased effectiveness of hydroxyl-radical scavengers in the presence of EDTA.
    Gutteridge JM
    Biochem J; 1987 May; 243(3):709-14. PubMed ID: 3117032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen radical damage to DNA by rifamycin SV and copper ions.
    Quinlan GJ; Gutteridge JM
    Biochem Pharmacol; 1987 Nov; 36(21):3629-33. PubMed ID: 2823829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hydrolysis product of ICRF-187 promotes iron-catalysed hydroxyl radical production via the Fenton reaction.
    Thomas C; Vile GF; Winterbourn CC
    Biochem Pharmacol; 1993 May; 45(10):1967-72. PubMed ID: 8390256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative damage to DNA and deoxyribose by beta-lactam antibiotics in the presence of iron and copper salts.
    Quinlan GJ; Gutteridge JM
    Free Radic Res Commun; 1988; 5(3):149-58. PubMed ID: 3234862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free radical damage to deoxyribose by anthracycline, aureolic acid and aminoquinone antitumour antibiotics. An essential requirement for iron, semiquinones and hydrogen peroxide.
    Gutteridge JM; Quinlan GJ
    Biochem Pharmacol; 1985 Dec; 34(23):4099-103. PubMed ID: 2998399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cobalt(II) ion as a promoter of hydroxyl radical and possible 'crypto-hydroxyl' radical formation under physiological conditions. Differential effects of hydroxyl radical scavengers.
    Moorhouse CP; Halliwell B; Grootveld M; Gutteridge JM
    Biochim Biophys Acta; 1985 Dec; 843(3):261-8. PubMed ID: 2998477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxyl radical generation by a light-dependent Fenton reaction.
    Van der Zee J; Krootjes BB; Chignell CF; Dubbelman TM; Van Steveninck J
    Free Radic Biol Med; 1993 Feb; 14(2):105-13. PubMed ID: 8381101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of pH on the conversion of superoxide to hydroxyl free radicals.
    Baker MS; Gebicki JM
    Arch Biochem Biophys; 1984 Oct; 234(1):258-64. PubMed ID: 6091565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of caffeic acid and its related catechols on hydroxyl radical formation by 3-hydroxyanthranilic acid, ferric chloride, and hydrogen peroxide.
    Iwahashi H; Ishii T; Sugata R; Kido R
    Arch Biochem Biophys; 1990 Jan; 276(1):242-7. PubMed ID: 2153363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.