BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 16658469)

  • 1. Malate Dehydrogenases of Pisum sativum: Tissue Distribution and Properties of the Particulate Forms.
    Zschoche WC; Ting IP
    Plant Physiol; 1973 Jun; 51(6):1076-81. PubMed ID: 16658469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A survey of plants for leaf peroxisomes.
    Tolbert NE; Oeser A; Yamazaki RK; Hageman RH; Kisaki T
    Plant Physiol; 1969 Jan; 44(1):135-47. PubMed ID: 5775848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of cytoplasmic nodule-associated forms of malate dehydrogenase involved in the symbiosis between Rhizobium leguminosarum and Pisum sativum.
    Appels MA; Haaker H
    Eur J Biochem; 1988 Feb; 171(3):515-22. PubMed ID: 3162212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and comparative properties of the cytosolic isocitrate dehydrogenases (NADP) from pea (Pisum sativum) roots and green leaves.
    Chen R; Le Maréchal P; Vidal J; Jacquot JP; Gadal P
    Eur J Biochem; 1988 Aug; 175(3):565-72. PubMed ID: 3137028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and properties of cytoplasmic and mitochondrial malate dehydrogenases of Physarum polycephalum.
    Teague WM; Henney HR
    J Bacteriol; 1973 Nov; 116(2):673-84. PubMed ID: 4355490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatographic and immunological evidence that chloroplastic and cytosolic pea (Pisum sativum L.) NADP-isocitrate dehydrogenases are distinct isoenzymes.
    Chen RD; Bismuth E; Champigny ML; Gadal P
    Planta; 1989 May; 178(2):157-63. PubMed ID: 24212744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subcellular localization of hexokinase in pea leaves. Evidence for the predominance of a mitochondrially bound form.
    Cosio E; Bustamante E
    J Biol Chem; 1984 Jun; 259(12):7688-92. PubMed ID: 6736023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on associations of glycolytic and glutaminolytic enzymes in MCF-7 cells: role of P36.
    Mazurek S; Hugo F; Failing K; Eigenbrodt E
    J Cell Physiol; 1996 May; 167(2):238-50. PubMed ID: 8613464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical Properties of Mitochondrial Membrane from Dry Pea Seeds and Changes in the Properties during Imbibition.
    Sato S; Asahi T
    Plant Physiol; 1975 Dec; 56(6):816-20. PubMed ID: 16659401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for Metabolic Domains within the Matrix Compartment of Pea Leaf Mitochondria : Implications for Photorespiratory Metabolism.
    Wiskich JT; Bryce JH; Day DA; Dry IB
    Plant Physiol; 1990 Jun; 93(2):611-6. PubMed ID: 16667511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density gradient and differential centrifugation methods for chloroplast purification and enzyme localization in leaf tissue : The case of citrate synthase in Pisum sativum L.
    Elias BA; Givan CV
    Planta; 1978 Jan; 142(3):317-20. PubMed ID: 24408195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The photorespiratory hydrogen shuttle. Synthesis of phthalonic acid and its use in the characterization of the malate/aspartate shuttle in pea (Pisum sativum) leaf mitochondria.
    Dry IB; Dimitriadis E; Ward AD; Wiskich JT
    Biochem J; 1987 Aug; 245(3):669-75. PubMed ID: 3663185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Malate dehydrogenase isoenzymes in division synchronized cultures of euglena.
    Davis B; Merrett MJ
    Plant Physiol; 1973 Jun; 51(6):1127-32. PubMed ID: 16658478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of malate dehydrogenase isozymes in wheat germ.
    Legris AJ; Tsai CS
    Can J Biochem; 1975 May; 53(5):527-35. PubMed ID: 1139396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous oxidation of glycine and malate by pea leaf mitochondria.
    Walker GH; Oliver DJ; Sarojini G
    Plant Physiol; 1982 Nov; 70(5):1465-9. PubMed ID: 16662699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental studies on microbodies in wheat leaves : III. On the photocontrol of microbody development.
    Feierabend J
    Planta; 1975 Jan; 123(1):63-77. PubMed ID: 24436025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and biochemical properties of two types of microbody from Neurospora crassa cells.
    Theimer RR; Wanner G; Anding G
    Cytobiologie; 1978 Oct; 18(1):132-44. PubMed ID: 152214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of substantially chlorophyll-free pea leaf mitochondria prepared by sucrose density gradient separation.
    Nash D; Wiskich JT
    Plant Physiol; 1983 Mar; 71(3):627-34. PubMed ID: 16662878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of the malate dehydrogenases isolated from the cytosolic fraction of several tissues of guinea-pig Cavia porcellus.
    Fornós M; Bozal X; Abante J; Cortés A; Bozal J
    Comp Biochem Physiol B; 1987; 86(1):89-94. PubMed ID: 3829636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of rotenone on respiration in pea cotyledon mitochondria.
    Johnson-Flanagan AM; Spencer MS
    Plant Physiol; 1981 Dec; 68(6):1211-7. PubMed ID: 16662080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.