These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 16658487)

  • 21. Leaf magnesium alters photosynthetic response to low water potentials in sunflower.
    Rao IM; Sharp RE; Boyer JS
    Plant Physiol; 1987 Aug; 84(4):1214-9. PubMed ID: 16665587
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of Drought Acclimation and CO(2) Enrichment on Osmotic Adjustment and Chlorophyll a Fluorescence of Sunflower during Drought.
    Conroy JP; Virgona JM; Smillie RM; Barlow EW
    Plant Physiol; 1988 Apr; 86(4):1108-15. PubMed ID: 16666040
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chloroplast avoidance movement as a sensitive indicator of relative water content during leaf desiccation in the dark.
    Nauš J; Šmecko S; Špundová M
    Photosynth Res; 2016 Aug; 129(2):217-25. PubMed ID: 27372712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitrate Reductase Activity and Polyribosomal Content of Corn (Zea mays L.) Having Low Leaf Water Potentials.
    Morilla CA; Boyer JS; Hageman RH
    Plant Physiol; 1973 May; 51(5):817-24. PubMed ID: 16658419
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photosystem I shows a higher tolerance to sorbitol-induced osmotic stress than photosystem II in the intertidal macro-algae Ulva prolifera (Chlorophyta).
    Gao S; Zheng Z; Gu W; Xie X; Huan L; Pan G; Wang G
    Physiol Plant; 2014 Oct; 152(2):380-8. PubMed ID: 24628656
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Matric potentials of leaves.
    Boyer JS
    Plant Physiol; 1967 Feb; 42(2):213-7. PubMed ID: 16656497
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of salts and electron transport on the conformation of isolated chloroplasts. I. Light-scattering and volume changes.
    Izawa S; Good NE
    Plant Physiol; 1966 Mar; 41(3):533-43. PubMed ID: 16656285
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photosynthetic apparatus of chilling-sensitive plants. IX. The involvement of alpha-tocopherol in the electron transport chain and the anti-oxidizing system in chloroplasts of tomato leaves.
    Michalski WP; Kaniuga Z
    Biochim Biophys Acta; 1981 Mar; 635(1):25-37. PubMed ID: 7213675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined effects of light and water stress on chloroplast volume regulation.
    McCain DC
    Biophys J; 1995 Sep; 69(3):1105-10. PubMed ID: 8519964
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo study of chloroplast volume regulation.
    McCain DC; Markley JL
    Biophys J; 1992 May; 61(5):1207-12. PubMed ID: 1600080
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensitivity of cell division and cell elongation to low water potentials in soybean hypocotyls.
    Meyer RF; Boyer JS
    Planta; 1972 Mar; 108(1):77-87. PubMed ID: 24473747
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dehydration and osmotic adjustment in apple stem tissue during winter as it relates to the frost resistance of buds.
    Pramsohler M; Neuner G
    Tree Physiol; 2013 Aug; 33(8):807-16. PubMed ID: 23939553
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conformation and activity of chloroplast coupling factor exposed to low chemical potential of water in cells.
    Younis HM; Boyer JS; Govindjee
    Biochim Biophys Acta; 1979 Nov; 548(2):328-40. PubMed ID: 159720
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vein recovery from embolism occurs under negative pressure in leaves of sunflower (Helianthus annuus).
    Nardini A; Ramani M; Gortan E; Salleo S
    Physiol Plant; 2008 Aug; 133(4):755-64. PubMed ID: 18346074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Desiccoplast-etioplast-chloroplast transformation under rehydration of desiccated poikilochlorophyllous Xerophyta humilis leaves in the dark and upon subsequent illumination.
    Solymosi K; Tuba Z; Böddi B
    J Plant Physiol; 2013 Apr; 170(6):583-90. PubMed ID: 23415648
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficiency and regulation of water transport in some woody and herbaceous species.
    Camacho-B SE; Hall AE; Kaufmann MR
    Plant Physiol; 1974 Aug; 54(2):169-72. PubMed ID: 16658853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydraulic architecture of plants of Helianthus annuus L. cv. Margot: evidence for plant segmentation in herbs.
    Lo Gullo MA; Castro Noval L; Salleo S; Nardini A
    J Exp Bot; 2004 Jul; 55(402):1549-56. PubMed ID: 15181104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Co-regulation of water and K(+) transport in sunflower plants during water stress recovery.
    Benlloch M; Benlloch-González M
    J Plant Physiol; 2016 Jun; 196-197():14-9. PubMed ID: 27016874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PSI-driven cyclic electron flow allows intertidal macro-algae Ulva sp. (Chlorophyta) to survive in desiccated conditions.
    Gao S; Shen S; Wang G; Niu J; Lin A; Pan G
    Plant Cell Physiol; 2011 May; 52(5):885-93. PubMed ID: 21471121
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A large population of small chloroplasts in tobacco leaf cells allows more effective chloroplast movement than a few enlarged chloroplasts.
    Jeong WJ; Park YI; Suh K; Raven JA; Yoo OJ; Liu JR
    Plant Physiol; 2002 May; 129(1):112-21. PubMed ID: 12011343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.