BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 16658493)

  • 1. Response of carbon dioxide fixation to water stress: parallel measurements on isolated chloroplasts and intact spinach leaves.
    Plaut Z; Bravdo B
    Plant Physiol; 1973 Jul; 52(1):28-32. PubMed ID: 16658493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of oxygen evolution in chloroplasts isolated from leaves with low water potentials.
    Boyer JS; Bowen BL
    Plant Physiol; 1970 May; 45(5):612-5. PubMed ID: 16657354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloroplast Response to Low Leaf Water Potentials: IV. Quantum Yield Is Reduced.
    Mohanty P; Boyer JS
    Plant Physiol; 1976 May; 57(5):704-9. PubMed ID: 16659555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of photosynthetic carbon dioxide fixation in isolated spinach chloroplasts exposed to reduced osmotic potentials.
    Plaut Z
    Plant Physiol; 1971 Nov; 48(5):591-5. PubMed ID: 16657842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloroplast Response to Low Leaf Water Potentials: III. Differing Inhibition of Electron Transport and Photophosphorylation.
    Keck RW; Boyer JS
    Plant Physiol; 1974 Mar; 53(3):474-9. PubMed ID: 16658727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon dioxide fixation in the light and in the dark by isolated spinach chloroplasts.
    Avron M; Gibbs M
    Plant Physiol; 1974 Feb; 53(2):140-3. PubMed ID: 16658664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthesis under osmotic stress : Inhibition of photosynthesis of intact chloroplasts, protoplasts, and leaf slices at high osmotic potentials.
    Kaiser WM; Kaiser G; Prachuab PK; Wildman SG; Heber U
    Planta; 1981 Dec; 153(5):416-22. PubMed ID: 24275810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosynthesis and ion content of leaves and isolated chloroplasts of salt-stressed spinach.
    Robinson SP; Downton WJ; Millhouse JA
    Plant Physiol; 1983 Oct; 73(2):238-42. PubMed ID: 16663201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fixation of O(2) during Photorespiration: Kinetic and Steady-State Studies of the Photorespiratory Carbon Oxidation Cycle with Intact Leaves and Isolated Chloroplasts of C(3) Plants.
    Berry JA; Osmond CB; Lorimer GH
    Plant Physiol; 1978 Dec; 62(6):954-67. PubMed ID: 16660647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osmotic adjustment by intact isolated chloroplasts in response to osmotic stress and its effect on photosynthesis and chloroplast volume.
    Robinson SP
    Plant Physiol; 1985 Dec; 79(4):996-1002. PubMed ID: 16664560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glyoxylate and glutamate effects on photosynthetic carbon metabolism in isolated chloroplasts and mesophyll cells of spinach.
    Lawyer AL; Cornwell KL; Gee SL; Bassham JA
    Plant Physiol; 1983 Jun; 72(2):420-5. PubMed ID: 16663018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of the phosphate transporter during isolation of intact chloroplasts from leaves of sunflower.
    Lamaze T; Robinson SP
    Photosynth Res; 1989 May; 20(2):147-59. PubMed ID: 24425533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of HgCl(2) on CO(2) dependence of leaf photosynthesis: evidence indicating involvement of aquaporins in CO(2) diffusion across the plasma membrane.
    Terashima I; Ono K
    Plant Cell Physiol; 2002 Jan; 43(1):70-8. PubMed ID: 11828024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The glyceraldehyde 3-phosphate and glycerate 3-phosphate shuttle and carbon dioxide assimilation in intact spinach chloroplasts.
    Bamberger ES; Ehrlich BA; Gibbs M
    Plant Physiol; 1975 Jun; 55(6):1023-30. PubMed ID: 16659203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of carbon dioxide, osmotic potential of nutrient solution, and light intensity on transpiration and resistance to flow of water in pepper plants.
    Janes BE
    Plant Physiol; 1970 Jan; 45(1):95-103. PubMed ID: 16657285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon dioxide and nitrite photoassimilatory processes do not intercompete for reducing equivalents in spinach and soybean leaf chloroplasts.
    Robinson JM
    Plant Physiol; 1986 Mar; 80(3):676-84. PubMed ID: 16664684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake of bicarbonate ion in darkness by isolated chloroplast envelope membranes and intact chloroplasts of spinach.
    Poincelot RP
    Plant Physiol; 1974 Oct; 54(4):520-6. PubMed ID: 16658920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon dioxide assimilation by leaves, isolated chloroplasts, and ribulose bisphosphate carboxylase from spinach.
    Lilley RM; Walker DA
    Plant Physiol; 1975 Jun; 55(6):1087-92. PubMed ID: 16659216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potassium, sodium, and chloride content of isolated intact chloroplasts in relation to ionic compartmentation in leaves.
    Robinson SP; Downton WJ
    Arch Biochem Biophys; 1984 Jan; 228(1):197-206. PubMed ID: 6696431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosynthetic activities of spinach leaf protoplasts.
    Nishimura M; Akazawa T
    Plant Physiol; 1975 Apr; 55(4):712-6. PubMed ID: 16659152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.